Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 7, 2020

Evolution of mitochondrial protein import – lessons from trypanosomes

  • André Schneider ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

The evolution of mitochondrial protein import and the systems that mediate it marks the boundary between the endosymbiotic ancestor of mitochondria and a true organelle that is under the control of the nucleus. Protein import has been studied in great detail in Saccharomyces cerevisiae. More recently, it has also been extensively investigated in the parasitic protozoan Trypanosoma brucei, making it arguably the second best studied system. A comparative analysis of the protein import complexes of yeast and trypanosomes is provided. Together with data from other systems, this allows to reconstruct the ancestral features of import complexes that were present in the last eukaryotic common ancestor (LECA) and to identify which subunits were added later in evolution. How these data can be translated into plausible scenarios is discussed, providing insights into the evolution of (i) outer membrane protein import receptors, (ii) proteins involved in biogenesis of α-helically anchored outer membrane proteins, and (iii) of the intermembrane space import and assembly system. Finally, it is shown that the unusual presequence-associated import motor of trypanosomes suggests a scenario of how the two ancestral inner membrane protein translocases present in LECA evolved into the single bifunctional one found in extant trypanosomes.

Acknowledgments

The author thanks his whole group for helpful discussions and E. K. Horn for technical assistance. Work in his laboratory is supported by the NCCR ‘RNA & Disease’ and by Funder Id: http://dx.doi.org/10.13039/501100001711, grant 175563, both funded by the Swiss National Science Foundation.

References

Alfonzo, J.D. and Söll, D. (2009). Mitochondrial tRNA import – the challenge to understand has just begun. Biol. Chem. 390, 717–22.10.1515/BC.2009.101Search in Google Scholar PubMed PubMed Central

Araiso, Y., Tsutsumi, A., Qiu, J., Imai, K., Shiota, T., Song, J., Lindau, C., Wenz, L.S., Sakaue, H., Yunoki, K., et al. (2019). Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature 575, 395–401.10.1038/s41586-019-1680-7Search in Google Scholar PubMed

Archibald, J.M. (2015). Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–21.10.1016/j.cub.2015.07.055Search in Google Scholar PubMed

Backes, S. and Herrmann, J.M. (2017). Protein translocation into the intermembrane space and matrix of mitochondria: mechanisms and driving forces. Front. Mol. Biosci. 4, 83.10.3389/fmolb.2017.00083Search in Google Scholar PubMed PubMed Central

Backes, S., Garg, S.G., Becker, L., Peleh, V., Glockshuber, R., Gould, S.B., and Herrmann, J.M. (2019). Development of the mitochondrial intermembrane space disulfide relay represents a critical step in eukaryotic evolution. Mol. Biol. Evol. 36, 742–56.10.1093/molbev/msz011Search in Google Scholar PubMed

Basu, S., Leonard, J.C., Desai, N., Mavridou, D.A., Tang, K.H., Goddard, A.D., Ginger, M.L., Lukes, J., and Allen, J.W. (2013). Divergence of Erv1-associated mitochondrial import and export pathways in trypanosomes and anaerobic protists. Eukaryot. Cell 12, 343–55.10.1128/EC.00304-12Search in Google Scholar PubMed PubMed Central

Bausewein, T., Mills, D.J., Langer, J.D., Nitschke, B., Nussberger, S., and Kuhlbrandt, W. (2017). Cryo-EM structure of the TOM core complex from Neurospora crassa. Cell 170, 693–700 e697.10.1016/j.cell.2017.07.012Search in Google Scholar PubMed

Bruggisser, J., Kaser, S., Mani, J., and Schneider, A. (2017). Biogenesis of a mitochondrial outer membrane protein in Trypanosoma brucei: targeting signal and dependence on an unique biogenesis factor. J. Biol. Chem. 292, 3400–10.10.1074/jbc.M116.755983Search in Google Scholar PubMed PubMed Central

Burki, F. (2014). The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb. Perspect. Biol. 6, a016147.10.1101/cshperspect.a016147Search in Google Scholar PubMed PubMed Central

Burki, F., Roger, A.J., Brown, M.W., and Simpson, A.G.B. (2020). The new tree of eukaryotes. Trends Ecol. Evol. 35, 43–55.10.1016/j.tree.2019.08.008Search in Google Scholar PubMed

Carrie, C. and Soll, J. (2017). To Mia or not to Mia: stepwise evolution of the mitochondrial intermembrane space disulfide relay. BMC Biol. 15, 119.10.1186/s12915-017-0468-1Search in Google Scholar PubMed PubMed Central

Carrie, C., Giraud, E., Duncan, O., Xu, L., Wang, Y., Huang, S., Clifton, R., Murcha, M., Filipovska, A., Rackham, O., et al. (2010). Conserved and novel functions for Arabidopsis thaliana MIA40 in assembly of proteins in mitochondria and peroxisomes. J. Biol. Chem. 285, 36138–48.10.1074/jbc.M110.121202Search in Google Scholar PubMed PubMed Central

Chew, O., Lister, R., Qbadou, S., Heazlewood, J.L., Soll, J., Schleiff, E., Millar, A.H., and Whelan, J. (2004). A plant outer mitochondrial membrane protein with high amino acid sequence identity to a chloroplast protein import receptor. FEBS Lett. 557, 109–14.10.1016/S0014-5793(03)01457-1Search in Google Scholar

Clements, A., Bursac, D., Gatsos, X., Perry, A.J., Civciristov, S., Celik, N., Likic, V.A., Poggio, S., Jacobs-Wagner, C., Strugnell, R.A., et al. (2009). The reducible complexity of a mitochondrial molecular machine. Proc. Natl. Acad. Sci. U.S.A. 106, 15791–5.10.1073/pnas.0908264106Search in Google Scholar PubMed PubMed Central

Craig, E.A. (2018). Hsp70 at the membrane: driving protein translocation. BMC Biol. 16, 11.10.1186/s12915-017-0474-3Search in Google Scholar PubMed PubMed Central

Dacks, J.B., Walker, G., and Field, M.C. (2008). Implications of the new eukaryotic systematics for parasitologists. Parasitol. Int. 57, 97–104.10.1016/j.parint.2007.11.004Search in Google Scholar PubMed

Dacks, J.B., Field, M.C., Buick, R., Eme, L., Gribaldo, S., Roger, A.J., Brochier-Armanet, C., and Devos, D.P. (2016). The changing view of eukaryogenesis – fossils, cells, lineages and how they all come together. J. Cell Sci. 129, 3695–703.10.1242/jcs.178566Search in Google Scholar PubMed

Desy, S., Schneider, A., and Mani, J. (2012). Trypanosoma brucei has a canonical mitochondrial processing peptidase. Mol. Biochem. Parasitol. 185, 161–4.10.1016/j.molbiopara.2012.07.005Search in Google Scholar PubMed

Desy, S., Mani, J., Harsman, A., Käser, S., and Schneider, A. (2016). TbLOK1/ATOM19 is a novel subunit of the non-canonical mitochondrial outer membrane protein translocase of Trypanosoma brucei. Mol. Microbiol. 102, 520–9.10.1111/mmi.13476Search in Google Scholar PubMed

Dimmer, K.S., Papic, D., Schumann, B., Sperl, D., Krumpe, K., Walther, D.M., and Rapaport, D. (2012). A crucial role for Mim2 in the biogenesis of mitochondrial outer membrane proteins. J. Cell Sci. 125, 3464–73.10.1242/jcs.103804Search in Google Scholar PubMed

Dolezal, P., Likic, V., Tachezy, J., and Lithgow, T. (2006). Evolution of the molecular machines for protein import into mitochondria. Science 313, 314–8.10.1126/science.1127895Search in Google Scholar PubMed

Dudek, J., Rehling, P., and van der Laan, M. (2013). Mitochondrial protein import: common principles and physiological networks. Biochim. Biophys. Acta 1833, 274–85.10.1016/j.bbamcr.2012.05.028Search in Google Scholar PubMed

Dukanovic, J. and Rapaport, D. (2011). Multiple pathways in the integration of proteins into the mitochondrial outer membrane. Biochim. Biophys. Acta 1808, 971–80.10.1016/j.bbamem.2010.06.021Search in Google Scholar PubMed

Duncan, M.R., Fullerton, M., and Chaudhuri, M. (2013). Tim50 in Trypanosoma brucei possesses a dual specificity phosphatase activity and is critical for mitochondrial protein import. J. Biol. Chem. 288, 3184–97.10.1074/jbc.M112.436378Search in Google Scholar PubMed PubMed Central

Ebenezer, T.E., Zoltner, M., Burrell, A., Nenarokova, A., Novak Vanclova, A.M.G., Prasad, B., Soukal, P., Santana-Molina, C., O’Neill, E., Nankissoor, N.N., et al. (2019). Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 17, 11.10.1186/s12915-019-0626-8Search in Google Scholar PubMed PubMed Central

Eckers, E., Cyrklaff, M., Simpson, L., and Deponte, M. (2012). Mitochondrial protein import pathways are functionally conserved among eukaryotes despite compositional diversity of the import machineries. Biol. Chem. 393, 513–24.10.1515/hsz-2011-0255Search in Google Scholar PubMed

Eckers, E., Petrungaro, C., Gross, D., Riemer, J., Hell, K., and Deponte, M. (2013). Divergent molecular evolution of the mitochondrial sulfhydryl:cytochrome C oxidoreductase Erv in opisthokonts and parasitic protists. J. Biol. Chem. 288, 2676–88.10.1074/jbc.M112.420745Search in Google Scholar PubMed PubMed Central

Eichenberger, C., Oeljeklaus, S., Bruggisser, J., Mani, J., Haenni, B., Kaurov, I., Niemann, M., Zuber, B., Lukes, J., Hashimi, H., et al. (2019). The highly diverged trypanosomal MICOS complex is organized in a nonessential integral membrane and an essential peripheral module. Mol Microbiol. 112, 1731–43.10.1111/mmi.14389Search in Google Scholar PubMed

Friedman, J.R. and Nunnari, J. (2014). Mitochondrial form and function. Nature 505, 335–43.10.1038/nature12985Search in Google Scholar PubMed PubMed Central

Fukasawa, Y., Oda, T., Tomii, K., and Imai, K. (2017). Origin and evolutionary alteration of the mitochondrial import system in eukaryotic lineages. Mol. Biol. Evol. 34, 1574–86.10.1093/molbev/msx096Search in Google Scholar PubMed PubMed Central

Gentle, I.E., Perry, A.J., Alcock, F.H., Likić, V.A., Dolezal, P., Ng, E.T., Purcell, A.W., McConnville, M., Naderer, T., Chanez, A.L., et al. (2007). Conserved motifs reveal details of ancestry and structure in the small TIM chaperones of the mitochondrial intermembrane space. Mol. Biol. Evol. 24, 1149–60.10.1093/molbev/msm031Search in Google Scholar PubMed

Grevel, A., Pfanner, N., and Becker, T. (2020). Coupling of import and assembly pathways in mitochondrial protein biogenesis. Biol Chem. 401, 117–29.10.1515/hsz-2019-0310Search in Google Scholar PubMed

Hansen, K.G. and Herrmann, J.M. (2019). Transport of proteins into mitochondria. Protein J. 38, 330–42.10.1007/s10930-019-09819-6Search in Google Scholar PubMed

Harsman, A. and Schneider, A. (2017). Mitochondrial protein import in trypanosomes: expect the unexpected. Traffic 18, 96–109.10.1111/tra.12463Search in Google Scholar PubMed

Harsman, A., Niemann, M., Pusnik, M., Schmidt, O., Burmann, B.M., Hiller, S., Meisinger, C., Schneider, A., and Wagner, R. (2012). Bacterial origin of a mitochondrial outer membrane protein translocase: new perspectives from comparative single channel electrophysiology. J. Biol. Chem. 287, 31437–45.10.1074/jbc.M112.392118Search in Google Scholar PubMed PubMed Central

Harsman, A., Oeljeklaus, S., Wenger, C., Huot, J.L., Warscheid, B., and Schneider, A. (2016). The non-canonical mitochondrial inner membrane presequence translocase of trypanosomatids contains two essential rhomboid-like proteins. Nat. Commun. 7, 13707.10.1038/ncomms13707Search in Google Scholar PubMed PubMed Central

Hauser, R., Pypaert, M., Häusler, T., Horn, E.K., and Schneider, A. (1996). In vitro import of proteins into mitochondria of Trypanosoma brucei and Leishmania tarentolae. J. Cell Sci. 109, 517–23.10.1242/jcs.109.2.517Search in Google Scholar PubMed

Heinz, E. and Lithgow, T. (2013). Back to basics: a revealing secondary reduction of the mitochondrial protein import pathway in diverse intracellular parasites. Biochim. Biophys. Acta 1833, 295–303.10.1016/j.bbamcr.2012.02.006Search in Google Scholar PubMed

Herrmann, J.M. and Riemer, J. (2012). Mitochondrial disulfide relay: redox-regulated protein import into the intermembrane space. J. Biol. Chem. 287, 4426–33.10.1074/jbc.R111.270678Search in Google Scholar PubMed PubMed Central

Jedelsky, P.L., Dolezal, P., Rada, P., Pyrih, J., Smid, O., Hrdy, I., Sedinova, M., Marcincikova, M., Voleman, L., Perry, A.J., et al. (2011). The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One 6, e17285.10.1371/journal.pone.0017285Search in Google Scholar PubMed PubMed Central

Käser, S., Oeljeklaus, S., Tyc, J., Vaughan, S., Warscheid, B., and Schneider, A. (2016). Outer membrane protein functions as integrator of protein import and DNA inheritance in mitochondria. Proc. Natl. Acad. Sci. U.S.A. 113, E4467–75.10.1073/pnas.1605497113Search in Google Scholar PubMed PubMed Central

Käser, S., Willemin, M., Schnarwiler, F., Schimanski, B., Poveda-Huertes, D., Oeljeklaus, S., Haenni, B., Zuber, B., Warscheid, B., Meisinger, C., et al. (2017). Biogenesis of the mitochondrial DNA inheritance machinery in the mitochondrial outer membrane of Trypanosoma brucei. PLoS Pathog. 13, e1006808.10.1371/journal.ppat.1006808Search in Google Scholar PubMed PubMed Central

Kaurov, I., Vancova, M., Schimanski, B., Cadena, L.R., Heller, J., Bily, T., Potesil, D., Eichenberger, C., Bruce, H., Oeljeklaus, S., et al. (2018). The diverged trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Curr. Biol. 28, 3393–407.e3395.10.1016/j.cub.2018.09.008Search in Google Scholar PubMed

Koehler, C.M., Jarosch, E., Tokatlidis, K., Schmid, K., Schweyen, R.J., and Schatz, G. (1998). Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. Science 279, 369–73.10.1126/science.279.5349.369Search in Google Scholar PubMed

Lane, N. (2014). Bioenergetic constraints on the evolution of complex life. Cold Spring Harb. Perspect. Biol. 6, a015982.10.1101/cshperspect.a015982Search in Google Scholar PubMed PubMed Central

Lister, R. and Whelan, J. (2006). Mitochondrial protein import: convergent solutions for receptor structure. Curr. Biol. 16, R197–9.10.1016/j.cub.2006.02.024Search in Google Scholar PubMed

Lister, R., Carrie, C., Duncan, O., Ho, L.H., Howell, K.A., Murcha, M.W., and Whelan, J. (2007). Functional definition of outer membrane proteins involved in preprotein import into mitochondria. Plant Cell 19, 3739–59.10.1105/tpc.107.050534Search in Google Scholar PubMed PubMed Central

Lopez-Garcia, P., Eme, L., and Moreira, D. (2017). Symbiosis in eukaryotic evolution. J. Theor. Biol. 434, 20–33.10.1016/j.jtbi.2017.02.031Search in Google Scholar PubMed PubMed Central

Lu, J. and Holmgren, A. (2014). The thioredoxin superfamily in oxidative protein folding. Antioxid. Redox Signal. 21, 457–70.10.1089/ars.2014.5849Search in Google Scholar PubMed

Maćasev, D., Whelan, J., Newbigin, E., Silva-Filho, M.C., Mulhern, T.D., and Lithgow, T. (2004). Tom22′, an 8-kDa trans-site receptor in plants and protozoans, is a conserved feature of the TOM complex that appeared early in the evolution of eukaryotes. Mol. Biol. Evol. 21, 1557–64.10.1093/molbev/msh166Search in Google Scholar PubMed

Makiuchi, T. and Nozaki, T. (2014). Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 100, 3–17.10.1016/j.biochi.2013.11.018Search in Google Scholar PubMed

Makki, A., Rada, P., Zarsky, V., Kereiche, S., Kovacik, L., Novotny, M., Jores, T., Rapaport, D., and Tachezy, J. (2019). Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLoS Biol. 17, e3000098.10.1371/journal.pbio.3000098Search in Google Scholar PubMed PubMed Central

Mani, J., Desy, S., Niemann, M., Chanfon, A., Oeljeklaus, S., Pusnik, M., Schmidt, O., Gerbeth, C., Meisinger, C., Warscheid, B., et al. (2015). Mitochondrial protein import receptors in kinetoplastids reveal convergent evolution over large phylogenetic distances. Nat. Commun. 6, 6646.10.1038/ncomms7646Search in Google Scholar PubMed PubMed Central

Mani, J., Meisinger, C., and Schneider, A. (2016a). Peeping at TOMs – diverse entry gates to mitochondria provide insights into the evolution of eukaryotes. Mol. Biol. Evol. 33, 337–51.10.1093/molbev/msv219Search in Google Scholar PubMed

Mani, J., Rout, S., Desy, S., and Schneider, A. (2016b). Mitochondrial protein import – functional analysis of the highly diverged Tom22 orthologue of Trypanosoma brucei. Sci. Rep. 7, 40738.10.1038/srep40738Search in Google Scholar PubMed PubMed Central

Marom, M., Azem, A., and Mokranjac, D. (2011). Understanding the molecular mechanism of protein translocation across the mitochondrial inner membrane: still a long way to go. Biochim. Biophys. Acta 1808, 990–1001.10.1016/j.bbamem.2010.07.011Search in Google Scholar PubMed

Martincova, E., Voleman, L., Pyrih, J., Zarsky, V., Vondrackova, P., Kolisko, M., Tachezy, J., and Dolezal, P. (2015). Probing the biology of Giardia intestinalis mitosomes using in vivo enzymatic tagging. Mol. Cell Biol. 35, 2864–74.10.1128/MCB.00448-15Search in Google Scholar PubMed PubMed Central

Mordas, A. and Tokatlidis, K. (2015). The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis. Acc. Chem. Res. 48, 2191–9.10.1021/acs.accounts.5b00150Search in Google Scholar PubMed PubMed Central

Morgenstern, M., Stiller, S.B., Lubbert, P., Peikert, C.D., Dannenmaier, S., Drepper, F., Weill, U., Hoss, P., Feuerstein, R., Gebert, M., et al. (2017). Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep. 19, 2836–52.10.1016/j.celrep.2017.06.014Search in Google Scholar PubMed PubMed Central

Munoz-Gomez, S.A., Slamovits, C.H., Dacks, J.B., and Wideman, J.G. (2015). The evolution of MICOS: ancestral and derived functions and interactions. Commun. Integr. Biol. 8, e1094593.10.1080/19420889.2015.1094593Search in Google Scholar PubMed PubMed Central

Niemann, M., Wiese, S., Mani, J., Chanfon, A., Jackson, C., Meisinger, C., Warscheid, B., and Schneider, A. (2013). Mitochondrial outer membrane proteome of Trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology. Mol. Cell. Proteomics. 12, 515–28.10.1074/mcp.M112.023093Search in Google Scholar PubMed PubMed Central

Niemann, M., Harsman, A., Mani, J., Peikert, C.D., Oeljeklaus, S., Warscheid, B., Wagner, R., and Schneider, A. (2017). tRNAs and proteins use the same import channel for translocation across the mitochondrial outer membrane of trypanosomes. Proc. Natl. Acad. Sci. U.S.A. 114, E7679–87.10.1073/pnas.1711430114Search in Google Scholar PubMed PubMed Central

Nunnari, J. and Suomalainen, A. (2012). Mitochondria: in sickness and in health. Cell 148, 1145–59.10.1016/j.cell.2012.02.035Search in Google Scholar PubMed PubMed Central

Opalinska, M. and Meisinger, C. (2015). Metabolic control via the mitochondrial protein import machinery. Curr. Opin. Cell Biol. 33, 42–8.10.1016/j.ceb.2014.11.001Search in Google Scholar PubMed

Pagliarini, D.J., Calvo, S.E., Chang, B., Sheth, S.A., Vafai, S.B., Ong, S.E., Walford, G.A., Sugiana, C., Boneh, A., Chen, W.K., et al. (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–23.10.1016/j.cell.2008.06.016Search in Google Scholar PubMed PubMed Central

Peikert, C.D., Mani, J., Morgenstern, M., Käser, S., Knapp, B., Wenger, C., Harsman, A., Oeljeklaus, S., Schneider, A., and Warscheid, B. (2017). Charting organellar importomes by quantitative mass spectrometry. Nat. Commun. 8, 15272.10.1038/ncomms15272Search in Google Scholar PubMed PubMed Central

Peleh, V., Zannini, F., Backes, S., Rouhier, N., and Herrmann, J.M. (2017). Erv1 of Arabidopsis thaliana can directly oxidize mitochondrial intermembrane space proteins in the absence of redox-active Mia40. BMC Biol. 15, 106.10.1186/s12915-017-0445-8Search in Google Scholar PubMed PubMed Central

Perry, A.J., Hulett, J.M., Likić, V.A., Lithgow, T., and Gooley, P.R. (2006). Convergent evolution of receptors for protein import into mitochondria. Curr. Biol. 16, 221–9.10.1016/j.cub.2005.12.034Search in Google Scholar PubMed

Perry, A.J., Rimmer, K.A., Mertens, H.D., Waller, R.F., Mulhern, T.D., Lithgow, T., and Gooley, P.R. (2008). Structure, topology and function of the translocase of the outer membrane of mitochondria. Plant Physiol. Biochem. 46, 265–74.10.1016/j.plaphy.2007.12.012Search in Google Scholar PubMed

Pfanner, N., Warscheid, B., and Wiedemann, N. (2019). Mitochondrial proteins: from biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 20, 267–84.10.1038/s41580-018-0092-0Search in Google Scholar PubMed PubMed Central

Poole, A.M. and Gribaldo, S. (2014). Eukaryotic origins: how and when was the mitochondrion acquired? Cold Spring Harb. Perspect. Biol. 6, a015990.10.1101/cshperspect.a015990Search in Google Scholar PubMed PubMed Central

Pusnik, M., Schmidt, O., Perry, A.J., Oeljeklaus, S., Niemann, M., Warscheid, B., Lithgow, T., Meisinger, C., and Schneider, A. (2011). Mitochondrial preprotein translocase of trypanosomatids has a bacterial origin. Curr. Biol. 21, 1738–43.10.1016/j.cub.2011.08.060Search in Google Scholar PubMed

Pusnik, M., Mani, J., Schmid, O., Niemann, M., Oeljeklaus, S., Schnarwiler, F., Warscheid, B., Lithgow, T., Meisinger, C., and Schneider, A. (2012). An essential novel component of the non-canonical mitochondrial outer membrane protein import system of trypanosomatids. Mol. Biol. Cell 23, 3420–8.10.1091/mbc.e12-02-0107Search in Google Scholar

Pyrihova, E., Motyckova, A., Voleman, L., Wandyszewska, N., Fiser, R., Seydlova, G., Roger, A., Kolisko, M., and Dolezal, P. (2018). A single Tim translocase in the mitosomes of Giardia intestinalis illustrates convergence of protein import machines in anaerobic eukaryotes. Genome Biol. Evol. 10, 2813–22.10.1093/gbe/evy215Search in Google Scholar PubMed PubMed Central

Rao, R.S., Salvato, F., Thal, B., Eubel, H., Thelen, J.J., and Moller, I.M. (2017). The proteome of higher plant mitochondria. Mitochondrion. 33, 22–37.10.1016/j.mito.2016.07.002Search in Google Scholar PubMed

Rehling, P., Brandner, K., and Pfanner, N. (2004). Mitochondrial import and the twin-pore translocase. Nat. Rev. Mol. Cell Biol. 5, 519–30.10.1038/nrm1426Search in Google Scholar PubMed

Rimmer, K.A., Foo, J.H., Ng, A., Petrie, E.J., Shilling, P.J., Perry, A.J., Mertens, H.D., Lithgow, T., Mulhern, T.D., and Gooley, P.R. (2011). Recognition of mitochondrial targeting sequences by the import receptors Tom20 and Tom22. J. Mol. Biol. 405, 804–18.10.1016/j.jmb.2010.11.017Search in Google Scholar PubMed

Roger, A.J., Munoz-Gomez, S.A., and Kamikawa, R. (2017). The origin and diversification of mitochondria. Curr. Biol. 27, R1177–92.10.1016/j.cub.2017.09.015Search in Google Scholar PubMed

Salinas, T., Duchene, A.M., and Marechal-Drouard, L. (2008). Recent advances in tRNA mitochondrial import. Trends Biochem. Sci. 33, 320–9.10.1016/j.tibs.2008.04.010Search in Google Scholar PubMed

Schneider, A. (2011). Mitochondrial tRNA import and its consequences for mitochondrial translation. Ann. Rev. Biochem. 80, 1033–53.10.1146/annurev-biochem-060109-092838Search in Google Scholar PubMed

Schneider, A. (2018). Mitochondrial protein import in trypanosomatids: variations on a theme or fundamentally different? PLoS Pathog. 14, e1007351.10.1371/journal.ppat.1007351Search in Google Scholar PubMed PubMed Central

Schneider, A. and Ochsenreiter, T. (2018). Failure is not an option – mitochondrial genome segregation in trypanosomes. J. Cell Sci. 131, jcs221820. doi: 10.1242/jcs.221820.10.1242/jcs.221820Search in Google Scholar PubMed

Schneider, A., Bursać, D., and Lithgow, T. (2008). The direct route: a simplified pathway for protein import into the mitochondrion of trypanosomes. Trends Cell Biol. 18, 12–8.10.1016/j.tcb.2007.09.009Search in Google Scholar PubMed

Schulz, C., Schendzielorz, A., and Rehling, P. (2015). Unlocking the presequence import pathway. Trends Cell Biol. 25, 265–75.10.1016/j.tcb.2014.12.001Search in Google Scholar PubMed

Sharma, S., Singha, U.K., and Chaudhuri, M. (2010). Role of Tob55 on mitochondrial protein biogenesis in Trypanosoma brucei. Mol. Biochem. Parasitol. 174, 89–100.10.1016/j.molbiopara.2010.07.003Search in Google Scholar PubMed PubMed Central

Singha, U.K., Peprah, E., Williams, S., Walker, R., Saha, L., and Chaudhuri, M. (2008). Characterization of the mitochondrial inner membrane protein translocator Tim17 from Trypanosoma brucei. Mol. Biochem. Parasitol. 159, 30–43.10.1016/j.molbiopara.2008.01.003Search in Google Scholar PubMed PubMed Central

Singha, U.K., Hamilton, V., Duncan, M.R., Weems, E., Tripathi, M.K., and Chaudhuri, M. (2012). Protein translocase of mitochondrial inner membrane in Trypanosoma brucei. J. Biol. Chem. 287, 14480–93.10.1074/jbc.M111.322925Search in Google Scholar PubMed PubMed Central

Singha, U.K., Hamilton, V., and Chaudhuri, M. (2015). Tim62, a novel mitochondrial protein in Trypanosoma brucei, is essential for assembly and stability of the TbTim17 protein complex. J. Biol. Chem. 290, 23226–39.10.1074/jbc.M115.663492Search in Google Scholar PubMed PubMed Central

Sirrenberg, C., Endres, M., Folsch, H., Stuart, R.A., Neupert, W., and Brunner, M. (1998). Carrier protein import into mitochondria mediated by the intermembrane proteins Tim10/Mrs11 and Tim12/Mrs5. Nature 391, 912–5.10.1038/36136Search in Google Scholar PubMed

Smíd, O., Matusková, A., Harris, S.R., Kucera, T., Novotný, M., Horváthová, L., Hrdý, I., Kutejová, E., Hirt, R.P., Embley, T.M., et al. (2008). Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog. 4, e1000243.10.1371/journal.ppat.1000243Search in Google Scholar PubMed PubMed Central

Smith Jr., J.T., Singha, U.K., Misra, S., and Chaudhuri, M. (2018). Divergent small Tim homologues are associated with TbTim17 and critical for the biogenesis of TbTim17 protein complexes in Trypanosoma brucei. mSphere. doi: 10.1128/mSphere.00204-18.10.1128/mSphere.00204-18Search in Google Scholar PubMed PubMed Central

Stefan Dimmer, K. and Rapaport, D. (2010). The enigmatic role of Mim1 in mitochondrial biogenesis. Eur. J. Cell Biol. 89, 212–5.10.1016/j.ejcb.2009.11.002Search in Google Scholar PubMed

Tarassov, I., Entelis, N., and Martin, R.P. (1995a). An intact protein translocating machinery is required for mitochondrial import of a yeast cytoplasmic tRNA. J. Mol. Biol. 245, 315–23.10.1006/jmbi.1994.0026Search in Google Scholar PubMed

Tarassov, I., Entelis, N., and Martin, R.P. (1995b). Mitochondrial import of a cytoplasmic lysine-tRNA in yeast is mediated by cooperation of cytoplasmic and mitochondrial lysyl-tRNA synthetases. EMBO J. 14, 3461–71.10.1002/j.1460-2075.1995.tb07352.xSearch in Google Scholar PubMed PubMed Central

Tokatlidis, K. (2018). Shaping the import system of mitochondria. eLife 7, e38209.10.7554/eLife.38209Search in Google Scholar PubMed PubMed Central

Tschopp, F., Charriere, F., and Schneider, A. (2011). In vivo study in Trypanosoma brucei links mitochondrial transfer RNA import to mitochondrial protein import. EMBO Rep. 12, 825–32.10.1038/embor.2011.111Search in Google Scholar PubMed PubMed Central

Tucker, K. and Park, E. (2019). Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution. Nat. Struct. Mol. Biol. 26, 1158–66.10.1038/s41594-019-0339-2Search in Google Scholar PubMed PubMed Central

Ulrich, T. and Rapaport, D. (2015). Biogenesis of β-barrel proteins in evolutionary context. Int. J. Med. Microbiol. 305, 259–64.10.1016/j.ijmm.2014.12.009Search in Google Scholar PubMed

Vial, S., Lu, H., Allen, S., Savory, P., Thornton, D., Sheehan, J., and Tokatlidis, K. (2002). Assembly of Tim9 and Tim10 into a functional chaperone. J. Biol. Chem. 277, 36100–8.10.1074/jbc.M202310200Search in Google Scholar PubMed

Vitali, D.G., Käser, S., Kolb, A., Dimmer, K.S., Schneider, A., and Rapaport, D. (2018). Independent evolution of functionally exchangeable mitochondrial outer membrane import complexes. eLife 7, e34488.10.7554/eLife.34488Search in Google Scholar PubMed PubMed Central

Vogtle, F.N., Burkhart, J.M., Gonczarowska-Jorge, H., Kucukkose, C., Taskin, A.A., Kopczynski, D., Ahrends, R., Mossmann, D., Sickmann, A., Zahedi, R.P., et al. (2017). Landscape of submitochondrial protein distribution. Nat Commun. 8, 290.10.1038/s41467-017-00359-0Search in Google Scholar PubMed PubMed Central

von Känel, C., Muñoz-Gómez, S.A., Oeljeklaus, S., Wenger, C., Warscheid, B., Wideman, J.G., Harsman, A., and Schneider, A. (2020). Homologue replacement in the import motor of the mitochondrial inner membrane of trypanosomes. eLife 9, e52560.10.7554/eLife.52560Search in Google Scholar PubMed PubMed Central

Wasilewski, M., Chojnacka, K., and Chacinska, A. (2017). Protein trafficking at the crossroads to mitochondria. Biochim. Biophys. Acta Mol. Cell Res. 1864, 125–37.10.1016/j.bbamcr.2016.10.019Search in Google Scholar PubMed

Wenger, C., Oeljeklaus, S., Warscheid, B., Schneider, A., and Harsman, A. (2017). A trypanosomal orthologue of an intermembrane space chaperone has a non-canonical function in biogenesis of the single mitochondrial inner membrane protein translocase. PLoS Pathog. 13, e1006550.10.1371/journal.ppat.1006550Search in Google Scholar PubMed PubMed Central

Zarsky, V. and Dolezal, P. (2016). Evolution of the Tim17 protein family. Biol. Direct 11, 54.10.1186/s13062-016-0157-ySearch in Google Scholar PubMed PubMed Central

Zarsky, V., Tachezy, J., and Dolezal, P. (2012). Tom40 is likely common to all mitochondria. Curr. Biol. 22, R479–81.10.1016/j.cub.2012.03.057Search in Google Scholar PubMed

Received: 2019-12-23
Accepted: 2020-03-02
Published Online: 2020-04-07
Published in Print: 2020-05-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2019-0444/html
Scroll to top button