Synthesis 2020; 52(24): 3865-3873
DOI: 10.1055/s-0040-1707863
special topic
© Georg Thieme Verlag Stuttgart · New York

Iridium(III)-Catalyzed Difluoroalkylation–Bicyclization of 1,7-Enynes toward Benzo[a]fluoren-5-ones under Visible-Light Photoredox Conditions

Min-Hua Huang
a   School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. of China
b   Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, P. R. of China   Email: jiangchem@jsnu.edu.cn
,
Wen-Juan Hao
a   School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. of China
,
Bo Jiang
a   School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. of China
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China (NSFC) (Grant No. 21971090).
Further Information

Publication History

Received: 05 April 2020

Accepted after revision: 07 May 2020

Publication Date:
16 June 2020 (online)


Published as part of the Special Topic Recent Advances in Metal-Catalyzed Ring Construction

Abstract

A new visible-light-induced Ir(III)-catalyzed difluoroalkylation–bicyclization of 1,7-enynes with ethyl 2-bromo-2,2-difluoroacetate (BrCF2CO2Et) is described, furnishing a wide range of difluoromethyl-containing benzo[a]fluoren-5-ones in good to excellent yields. The reaction is operationally simple, proceeds with high efficiency under mild conditions, and shows excellent functional group compatibility.

Supporting Information

 
  • References


    • For selected recent examples, see:
    • 1a Ni C, Hu M, Hu J. Chem. Rev. 2015; 115: 765
    • 1b Merino E, Nevado C. Chem. Soc. Rev. 2014; 43: 6598
    • 1c Chu L, Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
    • 1d Prakash GK. S, Hu J. Acc. Chem. Res. 2007; 40: 921
    • 1e Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 1f Zhou Q, Ruffoni A, Gianatassio R, Fujiwara Y, Sella E, Shabat D, Baran PS. Angew. Chem. Int. Ed. 2013; 52: 3949
    • 1g Feng Z, Min Q.-Q, Xiao Y.-L, Zhang B, Zhang X. Angew. Chem. Int. Ed. 2014; 53: 1669
    • 1h Pan X, Xia H, Wu J. Org. Chem. Front. 2016; 3: 1163
    • 1i Jung J, Kim E, You Y. Adv. Synth. Catal. 2014; 356: 2741
    • 2a Erickson JA, McLoughlin JI. J. Org. Chem. 1995; 60: 1626
    • 2b Hope HR, Heuvelman D, Duffin K, Smith C, Zablocki J, Schilling R, Hegde S, Lee L, Witherbee B, Baganoff M, Bruce C, Tall AR, Krul E, Glenn K, Connolly DT. J. Lipid Res. 2000; 41: 1604
    • 2c Romanenko VD, Kukhar VP. Chem. Rev. 2006; 106: 3868
    • 3a Ni C, Zhu L, Hu J. Acta Chim. Sin. 2015; 73: 90
    • 3b Belhomme M.-C, Besset T, Poisson T, Pannecoucke X. Chem. Eur. J. 2015; 21: 12836
    • 3c Zhao Q, Hao W.-J, Shi H.-N, Xu T, Tu S.-J, Jiang B. Org. Lett. 2019; 21: 9784
    • 3d Mikhaylov DY, Budnikova YH. Russ. Chem. Rev. 2013; 82: 835
    • 3e Barata-Vallejo S, Lantaño B, Postigo A. Chem. Eur. J. 2014; 20: 16806
    • 4a Zhu J, Zhang W, Zhang L, Liu J, Zheng J, Hu J. J. Org. Chem. 2010; 75: 5505
    • 4b Shi S.-L, Buchwald SL. Angew. Chem. Int. Ed. 2015; 54: 1646
    • 4c Shen Z.-J, Wang S.-C, Hao W.-J, Yang S.-Z, Tu S.-J, Jiang B. Adv. Synth. Catal. 2019; 361: 3837
  • 5 Ke M, Song Q.-L. Adv. Synth. Catal. 2017; 359: 384
  • 6 Chen H, Li P, Wang M, Wang L. Org. Lett. 2016; 18: 4794
  • 7 Nie X, Cheng C, Zhu G. Angew. Chem. Int. Ed. 2017; 56: 1898

    • For recent reviews, see:
    • 8a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 8b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 8c Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 8d Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 8e Hopkinson MN, Sahoo B, Li J, Glorius F. Chem. Eur. J. 2014; 20: 3874
    • 8f Xuan J, Zhang Z.-G, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632

    • For recent examples, see:
    • 8g Xie J, Shi S, Zhang T, Mehrkens N, Rudolph M, Hashmi AS. K. Angew. Chem. Int. Ed. 2015; 54: 6046
    • 8h Rong J, Deng L, Tan P, Ni C, Gu Y, Hu J. Angew. Chem. Int. Ed. 2016; 55: 2743
    • 8i Xie J, Zhang T, Chen F, Mehrkens N, Rominger F, Rudolph M, Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 2934
    • 8j Xu P, Wang G, Zhu Y, Li W, Cheng Y, Li S, Zhu C. Angew. Chem. Int. Ed. 2016; 55: 2939
    • 8k Huang L, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 4808

      For selected examples, see:
    • 9a Xie L.-Y, Fang T.-G, Tan J.-XT, Zhang B, Cao Z, Yang L.-H, He W.-M. Green Chem. 2019; 21: 3858
    • 9b Shang T.-Y, Lu L.-H, Cao Z, Liu Y, He W.-M, Yu B. Chem. Commun. 2019; 55: 5408
    • 9c Meng X.-X, Kang Q.-Q, Zhang J.-Y, Li Q, Wei W.-T, He W.-M. Green Chem. 2020; 22: 1388
    • 9d Liu Q, Wang L, Yue H, Li J-S, Luo Z, Wei W. Green Chem. 2019; 21: 1609
    • 9e Wei W, Bao P, Yue H, Liu S, Wang L, Li Y, Yang D. Org. Lett. 2018; 20: 5291
    • 9f Wei W, Wang L, Yue H, Bao P, Liu W, Hu C, Yang D, Wang H. ACS Sustainable Chem. Eng. 2018; 6: 17252
  • 10 Gao F, Yang C, Ma N, Gao G.-L, Li D, Xia W. Org. Lett. 2016; 18: 600
    • 11a Zhao Q, Tu S.-J, Jiang B. Acta Chim. Sin. 2019; 77: 927
    • 11b Shen Z.-J, Shi H.-N, Hao W.-J, Tu S.-J, Jiang B. Chem. Commun. 2018; 54: 11542
    • 11c Huang M.-H, Hao W.-J, Jiang B. Chem. Asian J. 2018; 13: 2958
    • 11d Zhu Y.-L, Zhu C.-F, Zhou P, Hao W.-J, Wang D.-C, Tu S.-J, Jiang B. J. Org. Chem. 2018; 83: 9641
    • 11e Shen Z.-J, Wu Y.-N, He C.-L, He L, Hao W.-J, Wang A.-F, Tu S.-J, Jiang B. Chem. Commun. 2018; 54: 445
    • 12a Luo HK, Khim LB, Schumann H, Lim C, Jie TX, Yang HY. Adv. Synth. Catal. 2007; 349: 1781
    • 12b Jin Z. Nat. Prod. Rep. 2005; 22: 196
    • 12c Huang M.-H, Zhu C.-F, He C.-L, Zhu Y.-L, Hao W.-J, Wang D.-C, Tu S.-J, Jiang B. Org. Chem. Front. 2018; 5: 1643
    • 12d Huang M.-H, Zhu Y.-L, Hao W.-J, Wang A.-F, Wang D.-C, Liu F, Wei P, Tu S.-J, Jiang B. Adv. Synth. Catal. 2017; 359: 2229
    • 12e Huang M.-H, Hong Y, Hu J.-Q, Yang S.-Z, Zhu Y.-L, Wang D.-C, Jiang B. Tetrahedron Lett. 2020; 61: 151507
  • 13 Studer A, Curran DP. Angew. Chem. Int. Ed. 2011; 50: 5018