Skip to main content
Log in

The Effect of the Nature of a Coagulant on the Nanofiltration Properties of Cellulose Membranes Formed from Solutions in Ionic Media

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The effect of the nature of a coagulant on the nanofiltration characteristics of the cellulose membranes obtained from solutions in 1-ethyl-3-methylimidazolium acetate ([Emim]Ac) or a mixture of this ionic liquid with dimethylsulfoxide (DMSO) is studied in this work. Precipitation in water leads to the formation of the densest cellulose membrane characterized by the low permeability of dimethylformamide (PDMF = 0.25 kg m−2 h−1 atm−1) and high rejection coefficients of the model substances, Orange II (350 g/mol) and Remazol Brilliant Blue R (626 g/mol), of 65 and 82%, respectively. To reduce the rate of precipitation of cellulose for the purpose of decreasing the density of the membranes, various compounds that partially mimic the medium of the solvent are introduced to water to obtain their 30% solutions: acetic acid to increase the concentration of acetate anions, N-methylmorpholine N-oxide to increase the concentration of ammonium fragments, and DMSO. In all the cases, the modification of the coagulant leads to a 2–2.5-fold increase in the permeability of the membranes without sacrificing the high values of the rejection coefficients. A cellulose membrane obtained by precipitation in a 30% aqueous solution of acetic acid demonstrates the best nanofiltration characteristics, namely, PDMF = 0.67 kg m−2 h−1 atm−1, ROrangeII = 66%, and RRemazol = 78%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Yu. D. Fialkov, A. N. Zhitomirskii, and Yu. A. Tarasenko, Physical Chemistry of Nonaqueous Solutions (Khimiya, Leningrad, 1973) [in Russian].

    Google Scholar 

  2. A. P. Kreshkov, Fundamentals of Analytical Chemistry. Physicochemical (Instrumental) Analysis Methods (Khimiya, Moscow, 1970) [in Russian].

  3. R. Morrison and R. Boid, Organic Chemistry (Mir, Moscow, 1133) [in Russian].

  4. S. K. Ogorodnikova, Petrochemist’s Handbook (Khimiya, Leningrad, 1978), Vol. 2 [in Russian].

    Google Scholar 

  5. I. K. M. Yua, D. C. W. Tsanga, S. S. Chena, L. Wanga, A.  J. Huntb, J. Sherwoodb, K. DeO. Vigierc, F. Jérômec, Y. S. Oka, and C. S. Poon, Bioresource Technol. 245, 456 (2017).

    Article  CAS  Google Scholar 

  6. V. Demlov and Z. Demlov, Interphase catalysis (Mir, Moscow, 1987) [in Russian].

  7. M. H. Makgato, L. J. Moitsheki, L. Shoko, B. L. Kgobane, D. L. Morgan, and W. W. Focke, Fuel Process. Technol. 90, 591 (2009).

    Article  CAS  Google Scholar 

  8. K.-S. Cho and Y.-K. Lee, Appl. Catal. B 147, 35 (2014).

    Article  CAS  Google Scholar 

  9. E. Torres-García, A. Galano, and G. Rodriguez-Gattorno, J. Catalys 282, 291.

  10. H. G. Franck and J. W. Stadelhofer, Industrial aromatic chemistry: Raw materials · processes · products. Springer Science & Business Media, 2012.

    Google Scholar 

  11. K. Vanherck, P. Vandezande, S. O. Aldea, and I. F. J. Vankelecom, J. Memb. Sci. 320, 468 (2008).

    Article  CAS  Google Scholar 

  12. A. V. Volkov, G. A. Korneeva, and G. F. Tereshchenko, Usp. Khim. 77, 1053 (2008).

    Article  CAS  Google Scholar 

  13. J. C. T. Lin and A. G. Livingston, Chem. Eng. Sci. 62, 2728 (2007).

    Article  CAS  Google Scholar 

  14. D. L. Oatley-Radcliffe, M. Walters, T. J. Ainscough, P. M. Williams, A. W. Mohammad, and N. Hilala, J. Water Proc. Eng. 19, 164 (2017).

    Article  Google Scholar 

  15. S. K. Lim, K. Goh, T.-H. Bae, and R. Wang, Chin. J. Chem. Eng. 25, 1653 (2017).

    Article  Google Scholar 

  16. K. Hendrix, G. Koeckelberghs, and I. F. J. Vankelecom, J. Membr. Sci. 452, 241 (2014).

    Article  CAS  Google Scholar 

  17. D. S. Burgal, J. Ludmila, and P. Livingston, J. Membr. Sci. 479, 105 (2015).

    Article  CAS  Google Scholar 

  18. Y. H. See-Toh, F. W. Limb, and A. G. Livingston, J. Membr. Sci. 301, 3 (2007).

    Article  CAS  Google Scholar 

  19. Y. H. See-Toh, M. Silva, and A. Livingston, J. Membr. Sci. 324, 220 (2008).

    Article  CAS  Google Scholar 

  20. S. M. Dutczak, F. P. Cuperus, M. Wessling, and D. F. Stamatialis, Sep. Purif. Technol. 102, 142 (2013).

    Article  CAS  Google Scholar 

  21. J. C. Jansen, S. Darvishmanesh, F. Tasselli, F. Bazzarelli, P. Bernardo, E. Tocci, K. Friess, A. Randova, E. Drioli, and B. V. Bruggen, J. Membr. Sci. 447, 107 (2013).

  22. S.-P. Sun, T.-S. Chung, K.-J. Lu, and S.-Y. Chan, AIChE J. 60, 3623 (2014).

    Article  CAS  Google Scholar 

  23. C. Linder, M. Nemas, M. Perry, and R. Ketraro, European Patent, 0392982 (1990).

  24. H. G. Hicke, I. Lehmann, G. Malsch, and M. Ulbricht, J. Membr. Sci. 198, 187 (2002).

    Article  CAS  Google Scholar 

  25. A. A. Alekseev, E. V. Ordina, and V. S. Osipchik, Plast. Massy 5, 30 (2009).

    Google Scholar 

  26. A. A. Yushkin, M. N. Efimov, A. A. Vasilev, Yu. G. Bog-danova, V. D. Dolzhikova, G. P. Karpacheva, and A. V. Volkov, Petr. Chem. 57, 341 (2017).

    Article  CAS  Google Scholar 

  27. P. Marchetti, M. F. J. Solomon, G. Szekely, and A. G. Livingston, Chem. Rev. 114, 10735 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. D. Klemm, B. Heublein, H.-P. Fink, and A. Bohn, Angew. Chem., Int. Ed. 44, 3358 (2005).

    Article  CAS  Google Scholar 

  29. M. Ghasemi, P. Alexandridis, and M. Tsianou, Cellulose 24, 571 (2017).

    Article  CAS  Google Scholar 

  30. B. Medronho, A. Romano, M. G. Miguel, L. Stigsson, and B. Lindman, Cellulose 19, 581 (2012).

    Article  CAS  Google Scholar 

  31. S. Wang, A. Lu, and L. Zhang, Progr. Polym. Sci. 53, 169 (2016).

    Article  CAS  Google Scholar 

  32. H. Strathmann and K. Kock, Desalination 21, 241 (1977).

    Article  CAS  Google Scholar 

  33. M. Paul and S. D. Jons, Polymer 103, 417 (2016).

    Article  CAS  Google Scholar 

  34. T. V. Rogovin and L. S. Petrova, RF Patent No. 740874 (1980).

  35. Polysaccharide-Based Fibers and Composites, Chemical and Engineering Fundamentals and Industrial Applications, Ed. by Lucia L. and Ayoub A. (Springer, 2018).

    Google Scholar 

  36. A. P. Manian, T. Pham, and T. Bechtold, Handbook of Properties of Textile and Technical Fibers (Elsevier Ltd., 2017).

    Google Scholar 

  37. C. Woodings, Regenerated Cellulose Fibres (Woodhead Publishing Ltd, 2001).

    Book  Google Scholar 

  38. L. K. Golova, V. V. Romanov, and S. P. Papkov, RF Patent No. 1645308 (1992).

  39. M. Shabbir and F. Mohammad, Sustainable Fibres and Textiles (Elsevier Ltd., 2017).

    Google Scholar 

  40. J. Wu and Q. Yuan, Polymer 204, 185 (2002).

    CAS  Google Scholar 

  41. X. Jie, Y. Cao, B. Lin, and Q. Yuan, J. Membr. Sci. 91, 1873 (2004).

    CAS  Google Scholar 

  42. Z. Mao, Y. Cao, X. Jie, G. Kang, M. Zhou, and Q. Yuan, Sep. Purif. Technol. 72, 28 (2010).

    Article  CAS  Google Scholar 

  43. Y. Abe and A. Mochizuki, J. Appl. Polym. Sci. 84, 2302 (2002).

    Article  CAS  Google Scholar 

  44. H. J. Li, T. M. Cao, J. J. Qin, X. M. Jie, T. H. Wang, J. H. Liu, and Q. Yuan, J. Membr. Sci. 279, 328 (2006).

    Article  CAS  Google Scholar 

  45. T. S. Anokhina, A. A. Yushkin, I. S. Makarov, V. Ya. Ignatenko, A. V. Kostyuk, S. V. Antonov, and A. V. Volkov, Petr. Chem. 56, 1085 (2016).

    Article  CAS  Google Scholar 

  46. S. O. Ilyin, V. V. Makarova, T. S. Anokhina, V. Y. Ignatenko, T. V. Brantseva, A. V. Volkov, and S. V. Antonov, Cellulose 25, 2515 (2018).

    Article  CAS  Google Scholar 

  47. I. S. Makarov, L. K. Golova, M. I. Vinogradova, M. V. Mironova, I. S. Levin, G. N. Bondarenko, G. A. Shandryuk, N. A. Arkharova, and V. G. Kulichikhin, Polym. Sci. A 61, 598 (2019).

    Article  CAS  Google Scholar 

  48. M. M. Seitkalieva, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Moscow, 2015, p. 162.

  49. P. Mäki-Arvela, I. Anugwom, P. Virtanen, R. Sjöholm, and J. P. Mikkola, Ind. Crops Prod. 32, 175 (2010).

    Article  CAS  Google Scholar 

  50. A. Xu and Y. Zhang, J. Mol. Struct. 1088, 101 (2015).

    Article  CAS  Google Scholar 

  51. J. Zhang, J. Wu, J. Yu, X. Zhang, J. Hea, and J. Zhang, Mater. Chem. Front. 1, 1273 (2017).

    Article  CAS  Google Scholar 

  52. S. Wang, A. Lu, and L. Zhang, US Patent No. 6,423,119B1 (2002).

  53. F. M. Sukma and P. Z. Çulfaz-Emecen, J. Membr. Sci. 545, 329 (2018).

    Article  CAS  Google Scholar 

  54. T. S. Anokhina, T. S. Pleshivtseva, V. Ya. Ignatenko, S. V. Antonov, and A. V. Volkov, Petr. Chem. 57, 477 (2017).

    Article  CAS  Google Scholar 

  55. S. O. Ilyin, V. V. Makarova, T. S. Anokhina, A. V. Volkov, and S. V. Antonov, Polym. Sci. A 59, 676 (2017).

    Article  CAS  Google Scholar 

  56. L. P. Perepechkin, Russ. Chem. Rev. 57, 539 (1988).

    Article  Google Scholar 

  57. T. Anokhina, V. Ignatenko, S. Ilyin, S. Antonov, and A. Volkov, J. Phys. Conf. Ser. 1099, 012039 (2018).

    Article  CAS  Google Scholar 

  58. L. Segal, J. J. Creely, Jr. A. E. Martin, and C. M. Conrad, Text. Res. J. 29, 786 (1959).

    Article  CAS  Google Scholar 

  59. S. E. Tsar’kov, A. O. Malakhov, E. G. Litvinova, and A. V. Volkov, Petr. Chem. 53, 537 (2013).

    Article  CAS  Google Scholar 

  60. G. R. Guillen, Y. Pan, M. Li, and E. M. V. Hoek, Ind. Eng. Chem. Res. 50, 3798 (2011).

    Article  CAS  Google Scholar 

  61. M. Paul and S. D. Jons, Polymer 103, 417 (2016).

    Article  CAS  Google Scholar 

  62. Y. Zhao, X. Liu, J. Wang, and S. Zhang, J. Phys. Chem. B 117, 9042 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. L. C. Fidale, N. Ruiz, T. Heinze, and O. A. E. Seoud, Macromol. Chem. Phys. 209, 1240 (2008).

    Article  CAS  Google Scholar 

  64. G. I. Mantanis, R. A. Young, and R. M. Rowell, Cellulose 2, 1 (1995).

    CAS  Google Scholar 

  65. A. A. Yushkin, T. S. Anokhina, and A. V. Volkov, Petr. Chem. 55, 746 (2015).

    Article  CAS  Google Scholar 

  66. Cellulose, Fundamental Aspects, Ed. by Van De Ven T. G. M. (In Tech, 2013).

    Google Scholar 

  67. A. M. Bochek, Russ. J. Appl. Chem. 76, 1711 (2003).

    Article  CAS  Google Scholar 

  68. P. Weerachanchai, Y. Wong, K. H. Lim, T. T. Y. Tan, and J.-M. Lee, Chem. Phys. Chem. 15, 3580 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. C. M. Hansen, Hansen Solubility Parameters: A User’s Handbook (CRC Press, 2007).

    Book  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research, project no. 17-08-00499 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Anokhina.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anokhina, T.S., Ignatenko, V.Y., Kostyuk, A.V. et al. The Effect of the Nature of a Coagulant on the Nanofiltration Properties of Cellulose Membranes Formed from Solutions in Ionic Media. Membr. Membr. Technol. 2, 149–158 (2020). https://doi.org/10.1134/S2517751620030026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751620030026

Keywords:

Navigation