Skip to main content
Log in

Modeling of Ultrafiltration Process Taking Into Account the Formation of Sediment on Membrane Surface

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

A mathematical model is proposed for separating liquids which contain acrylic dispersions and returning expensive technological components dissolved within them to the production cycle. The main limiting factor is the formation of a sediment layer on the membrane surface. This process is unsteady, because the thickness of the sediment layer varies both in the time of the separation process and in the length of the membrane module. The influence of the sediment layer on the hydrodynamics and mass transfer efficiency, its productivity, and the quality of purification is determined. The calculation of the sediment layer and its influence on the separation process is performed using the microprocess method. This method is based on material and energy balances and takes into account viscosity and diffusion coefficients, which vary depending on the temperature and composition of the mixture. The dependences of the sediment thickness on time and the length of the membrane module and selectivity coefficients on the concentration of the colloidal solution are obtained to determine the effective parameters of the baromembrane installation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. B. N. Mel’nikov, Theoretical Basis of Technology of Dyeing Fibrous Materials (Legkaya industriya, Moscow, 1978) [in Russian].

  2. A. I. Rodionov, Yu. P. Kuznetsov, and G. S. Solov’ev, Protection of Biosphere from Industrial Emissions. Basics of Design of Technological Processes (Khimiya, KolosS, Moscow, 2005) [in Russian].

    Google Scholar 

  3. V. S. Beskov and V. S. Safronov, General Chemical Technology and Fundamentals of Industrial Ecology (Khimiya, Moscow, 1999) [in Russian].

    Google Scholar 

  4. G. V. Lepesh and A. S. Panasyuk, Tekhnik. Ekonom. Probl. Serv. 3, 14 (2016).

    Google Scholar 

  5. A. E. Tret’yakova, E. A. Chernogortsev, and V. V. Safonov, Tekhnol. Tekstil. Prom. 2, 127 (2016).

    Google Scholar 

  6. A. V. Nevskii, V. P. Meshalkin, and V. A. Sharnin, Analysis and Synthesis of Water Resource-Saving Chemical-Technological Systems (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  7. Yu. I. Dytnerskii, Reverse Osmosis and Ultrafiltration (Khimia, Moscow, 1978) [in Russian].

    Google Scholar 

  8. S. V. Fedosov, V. A. Maslennikov, Yu. P. Osadchii, and A. V. Markelov, Vestn. Grazhd. Inzh. 5, 154 (2013).

    Google Scholar 

  9. V. I. Novikova, V. V. Kryachkova, and Yu. I. Tarasova, Membr. Membr. Tekhnol. 1, 127 (2019).

    Article  Google Scholar 

  10. Yu. I. Dytnerskii, Baromembrane Processes (Khimiya, Moscow, 1986) [in Russian].

    Google Scholar 

  11. V. P. Dubyaga, L. P. Perepechkin, and E. E. Katalevskii, Polymer Membranes (Khimiya, Moscow, 1981) [in Russian].

    Google Scholar 

  12. S.-T. Hvang and K. Kammermejer, Membrane in Separation (Syndey, Toronto: A Wiley-Interscience Publication, John Wiley & Sons, New York, London, 1981).

  13. A. Brou, L. Ding, P. Boulnois, and M. Y. Jaffrin, J. Membr. Sci. 197, 269 (2002).

    Article  CAS  Google Scholar 

  14. C.-C. Ho and A. L. Zydney, J. Membr. Sci. 155, 261 (1999).

    Article  CAS  Google Scholar 

  15. J. D. Nikolova and M. A. Islam, J. Membr. Sci. 146, 105 (1998).

    Article  CAS  Google Scholar 

  16. W. Piatkiewicz, S. Rosinski, D. Lewinska, J. Bukowski, and W. Judycki, J. Membr. Sci. 153, 91 (1999).

    Article  CAS  Google Scholar 

  17. J. H. Sung, M.-S. Chun, and H. J. Choi, J. Colloid Interface Sci. 264, 195 (2003).

    Article  CAS  Google Scholar 

  18. M. Zhang and L. Song, J. Environ. Eng. 126, 667 (2000).

    Article  CAS  Google Scholar 

  19. G. Belford and B. Marks, Desalination 28, 13 (1979).

    Article  Google Scholar 

  20. W. F. Blatt, A. Dravid, A. S. Michaels, and L. Nelson, Membr. Sci. Technol. 9, 47 (1970).

    Article  Google Scholar 

  21. M. Mulder, Basic Principles of Membrane Technology (Center for Membrane Science and Technology, University of Twente, Kluwer Academic, Netherlands, 1995).

    Google Scholar 

  22. J. G. Wijmans, S.-I. Nakao, J. W. A. van der Berg, F. R. Troelstra, and C. A. Smolders, J. Membr. Sci. 22, 117 (1985).

    Article  CAS  Google Scholar 

  23. R. Figueroa, A. Cassano, and E. Drioli, Sep. Purify. Technol. 80, 1 (2011).

    Article  CAS  Google Scholar 

  24. C. Tien and B. V. Ramarao, J. Chin. Inst. Chem. 37, 81 (2006).

    CAS  Google Scholar 

  25. C. Wang, Q. Li, H. Tang, D. Yan, W. Zhou, J. Xing, and Y. Wan, BioRes. Technol. 116, 366 (2012).

    CAS  Google Scholar 

  26. A. Salahi, M. Abbasi, and T. Mohammadi, Desalination 251, 153 (2010).

    Article  CAS  Google Scholar 

  27. M. J. Corbatón-Báguena, S. Álvarez-Blanco, and M. C. Vincent-Vela. Desalination, 360, 87 (2015).

    Article  Google Scholar 

  28. G. Segré and A. Silberberg, J. Fluid Mech. Digit. Arc. 115 (1962).

  29. G. Segré and A. Silberberg, J. Fluid Mechanics Digital Archive, 136 (1962).

  30. D. Houi and R. Lenormand, Filtr. Sep. 238 (1986).

  31. M. Tassopoulos and J. A. O’Brien, II AIChE J. 35, 967 (1989).

    Article  CAS  Google Scholar 

  32. Yu. P. Osadchii and V. N. Blinichev, Tekhnol. Tekstil. Prom. 7, 87 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Markelov.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedosov, S.V., Osadchy, Y.P. & Markelov, A.V. Modeling of Ultrafiltration Process Taking Into Account the Formation of Sediment on Membrane Surface. Membr. Membr. Technol. 2, 169–180 (2020). https://doi.org/10.1134/S251775162003004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S251775162003004X

Keywords:

Navigation