Skip to main content
Log in

Determination of Optimal Operation Pressure Values for Ultrafiltration Wastewater Treatment

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The article presents results of research aimed to determine optimum operational modes of ultrafiltration membranes used to purify biologically treated wastewater as a pretreatment for further reverse osmosis desalination to produce water for industrial use. Results of experimental investigations are presented that evaluated influence of working pressure on operational costs. Optimum values of working pressure are determined for ultrafiltration treatment of wastewater with suspended solids concentrations 20 and 50 mg/L. A special respect is attributed to reduction of ultrafiltration membrane flux due to pore plugging during filtration cycle. Characteristics of membrane backwashing process are determined aimed on flushing-off all particles that plug membrane pores. Prognostic techniques are developed to predict reduction of ultrafiltration membrane flux due to pore plugging and schedule to apply additional membrane backwashes after flux reduces by 25 per cent at high-pressure values is proposed. Additional operational costs values are determined that account for increase of required membrane area and wash water to remove particles that plug pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

REFERENCES

  1. M. Wilf, The Guidebook to Membrane for Wastewater Reclamation (Balaban Desalination Publications, 2010).

    Google Scholar 

  2. M. Blazevski, D. Senior, J. Cadera, M. Cuo Min, C. Richerson, and R. Flis, Immersed Ultrafiltration on Global Reuse and Recycled Water Projects (Inter. Desalination Association World Congress, San Paolo, Brazil, REF: IDA 17WC-58265-Blazevski).

  3. D. Vial and G. Doussaw, Desalination 153, 131 (2002).

    Google Scholar 

  4. A. Matin, Z. Khan, S. M. Zaidi, and M. C. Boyce, Desalination 281, 1 (2011).

    Article  CAS  Google Scholar 

  5. A. R. Guastalli, F. X. Simon, Y. Penru, A. de Kerchove, J. Liorens, and S. Baig, Desalination 322, 144 (2013).

    Article  CAS  Google Scholar 

  6. T. Merle, L. Dramas, L. Gatierses, V. Garcia-Molina, and J.-P. Crone, Water Res. 93, 10 (2016).

    Article  CAS  Google Scholar 

  7. S. A. A. Tabatabai, J. C. Shippers, and M. D. Kennedy, Water Res. 45, 283 (2011).

    Article  Google Scholar 

  8. K. Li, H. Liang, F. Qu, S. Shao, H. Yu, Z. Han, X. Du, and G. Li, J. Membr. Sci. 471, 94 (2014).

    Article  CAS  Google Scholar 

  9. C. Tansakul, S. Laboric, and C. Cabasud, Desal. Water Treat. 9, 279 (2009).

    Article  CAS  Google Scholar 

  10. X. Cui and K.-H. Choo, Water Res. 47, 4227 (2013).

    Article  CAS  Google Scholar 

  11. S. K. Lateef, B. Z. Soh, and K. Kimura, Biores. Technol. 150, 149 (2013).

    Article  CAS  Google Scholar 

  12. T. A. Nascimento, F. R. Mejía, F. Fdz-Polanco, and M. Peña, Environ. Technol. 38, 1 (2016).

    Google Scholar 

  13. PND F 14.1:2:4.254-09. Quantitative Chemical Analysis of Water. Procedure for Measuring Mass Concentration of Suspended and Calcined Suspended Solids in Samples of Drinking, Natural, and Wastewater by Gravimetric Method.

  14. V. A. Zhuzhikov, Filtration. Theory and Practice of Suspension Separation (Khimiya, Moscow, 1971) [in Russian].

    Google Scholar 

  15. A. P. Andrianov, D. V. Spitsov, A. G. Pervov, and E. B. Yurchevskii, Vodosnab. Sanit. Tekh. 7, 29 (2009).

    Google Scholar 

  16. M. F. Tay, C. Liu, E. R. Cornelissen, B. Wu, and T. H. Chong, Water Res. 129, 180 (2018).

    Article  CAS  Google Scholar 

  17. J. Senán-Salinas, R. García-Pacheco, J. Landaburu-Aguirre, and E. García-Calvo, Resour., Conserv. Recycl. 150, 104423 (2019).

    Article  Google Scholar 

  18. S. Vinardell, S. Astals, J. Mata-Alvarez, and J. Dosta, Biores. Technol. 122395 (2019).

  19. S. F. Anis, R. Hashaikeh, and N. Hilal, Desalination 452, 159 (2019).

    Article  CAS  Google Scholar 

  20. S. Atkinson, Membr. Technol. 6, 5 (2019).

    Google Scholar 

  21. T. Krahnstöver, R. Hochstrat, and T. Wintgens, J. Water Proc. Eng. 30, 100646 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Pervov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pervov, A.G., Tikhonov, K.V. & Makisha, N.A. Determination of Optimal Operation Pressure Values for Ultrafiltration Wastewater Treatment. Membr. Membr. Technol. 2, 159–168 (2020). https://doi.org/10.1134/S2517751620030051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751620030051

Keywords:

Navigation