Skip to main content
Log in

Scheelite of the Kekura Gold Deposit, Western Chukchi Peninsula: Trace Elements and Fluid Inclusions

  • Published:
Moscow University Geology Bulletin Aims and scope Submit manuscript

Abstract

Scheelite of the Kekura gold deposit in the Western Chukchi Peninsula is reported for the first time. Three generations of the mineral have been identified. According to the LA–ICPMS data, the Mo content in scheelite does not exceed 0.2 ppm and the total REE ranges from 20 to 150 ppm. The REE distribution patterns of all three scheelite generations have a strong positive Eu anomaly (Eu/Eu* = 4.4–55.6), which is typical of scheelite from intrusion-related and orogenic gold deposits. The high Sr concentration (1300–12 000 ppm) is characteristic of the hypabyssal intrusion-related Au deposits. According to the fluid inclusion data, the minimal crystallization temperature of scheelite and associated quartz is 200–250°С.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Van Achterbergh, E., Ryan, C.G., Jackson, S.E., et al., Data reduction software for LA–ICP–MS: appendix, in Laser Ablation-ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications, Sylvester, P.J., Ed., Min. Assoc. Canada, Ottawa, Ontario, Canada, 2001, vol. 29, pp. 239–243.

    Google Scholar 

  2. Baksheev, I.A., Prokof’ev, V.Yu., and Ustinov, V.I., Genesis of metasomatic rocks and mineralized veins at the Berezovskoe deposit, Central Urals: evidence from fluid inclusions and stable isotopes, Geochem. Int., 2001, vol. 39, no. 2, pp. S129–S144.

    Google Scholar 

  3. Bortnikov, N.S., Gamyanin, G.N., Vikentieva, O.V., et al., Fluid composition and origin in the hydrothermal system of the Nezhdaninsky gold deposit, Sakha (Yakutia), Russia, Geol. Ore Deposits, 2007, vol. 49, no. 2, pp. 87–128.

    Article  Google Scholar 

  4. Brugger, J., Bettiol, A.A., Costa, S., et al., Mapping REE distribution in scheelite using luminescence, Mineral. Mag., 2000, vol. 64, no. 5, pp. 891–903.

    Article  Google Scholar 

  5. Dostal, J., Kontak, D.J., and Chatterjee, A.K., Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada: genetic implications, Mineral. Petrol., 2009, vol. 97, pp. 95–109.

    Article  Google Scholar 

  6. Fu, Y., Sun, X., Zhou, H., et al., In-situ LA–ICP–MS trace elements analysis of scheelites from the giant Beiya gold-polymetallic deposit in Yunnan Province, Southwest China and its metallogenic implications, Ore Geol. Rev., 2017, vol. 80, pp. 828–837.

    Article  Google Scholar 

  7. Ghaderi, M., Palin, J.M., Campbell, I.H., et al., Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie–Norseman region, Western Australia, Econ. Geol., 1999, vol. 94, no. 3, pp. 423–437.

    Article  Google Scholar 

  8. Hodgson, C.J., The structure of shear-related, vein-type gold deposits: A review, Ore Geol. Rev., 1989, vol. 4, no. 3, pp. 231–273.

    Article  Google Scholar 

  9. Jochum, K.P., Nohl, U., Herwig, K., et al., GeoReM: A new geochemical database for reference materials and isotopic standards, Geostand. Geoanal. Res., 2005, vol. 29, no. 3, pp. 333–338.

    Article  Google Scholar 

  10. Kempe, U. and Oberthür, Th., Physical and geochemical characteristics of scheelite from gold deposits. A reconnaissance study, in Proc. IV Biennial SGA Meeting. Turku, Finland, Rootterdam: Balkema, 1997.

  11. Mao, J., Konopelko, D., Seltmann, R., et al., Postcollisional age of the Kumtor gold deposit and timing of Hercynian events in the Tien Shan, Kyrgyzstan, Econ. Geol., 2004, vol. 99, no. 8, pp. 1771–1780.

    Article  Google Scholar 

  12. Martin, R.D., Syenite-Hosted Gold Mineralization and Hydrothermal Alteration at the Young Davidson Deposit, Matachewan, Ontario: Univ. Waterloo, Ontario, Canada, 2012. https://uwspace.uwaterloo.ca/bitstream/handle/ 10012/6677/Martin_Ryan.pdf. Cited April 26, 2019.

  13. Poulin, R.S., Kontak, D.J., McDonald, A., et al., Assessing scheelite as an ore-deposit discriminator using its trace-element and REE chemistry, Can. Mineral., 2018, vol. 56, no. 3, pp. 265–302.

    Article  Google Scholar 

  14. Ribeiro-Rodrigues, L.C., de Oliveira, C.G., and Friedrich, G., The Archean BIF-hosted Cuiaba gold deposit, Quadrilatero Ferrifero, Minas Gerais, Brazil, Ore. Geol. Rev., 2007, vol. 32, nos. 3–4, pp. 543–570.

    Article  Google Scholar 

  15. Roberts, S., Palmer, M.R., and Waller, L., Sm–Nd and REE characteristics of tourmaline and scheelite from the Bjorkdal gold deposit, northern Sweden: evidence of an intrusion-related gold deposit, Econ. Geol., 2006, vol. 101, pp. 1415–1425.

    Article  Google Scholar 

  16. Sciuba, M., Beaudoin, G., and Hout, F., Texture, cathodoluminescence and trace elements composition of scheelite, indicator of orogenic gold deposits, in Proc. 14th Technol. Forum, Val D’Or, Canada, 2016. http://www.consorem.ca/ presentation_pub/forum_techno_2016/presentations_ forumt_016/13H50_SCIUBA_DIVEX_2016.pdf. Cited May 6, 2019.

  17. Song, G., Qin, K., Li, G., et al., Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W–Mo deposits in the Chizhou area, Anhui Province, eastern China, Am. Mineral., 2014, vol. 99, nos. 2–3, pp. 303–317.

    Article  Google Scholar 

  18. Spiridonov, E.M., The inversion plutonogenic gold–quartz associations in the Caledonides of Northern Kazakhstan, Geol. Rudn. Mestor., 1995, vol. 37, no. 3, pp. 179–207.

    Google Scholar 

  19. Spiridonov, E.M., Sokolova, N.F., Naz’mova, G.N., et al., Typical chemistry of scheelite from depth variable plutonogenic hydrothermal gold deposits, Dokl. Earth Sci., 1999, vol. 364, no. 1, pp. 47–49.

    Google Scholar 

  20. Sun, K. and Chen, B., Trace elements and Sr–Nd isotopes of scheelite: implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China, Am. Mineral., 2017, vol. 102, pp. 1114–1128.

    Google Scholar 

  21. Sun, S.S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in the Ocean Basins. Geol. Soc. London. Spec. Publ., Saunders, A.D. and Norry, M.J., Eds., 1989, vol. 42, no. 1, pp. 313–345.

  22. Sun, X., Zhang, Y., Xiong, D., et al., Crust and mantle contributions to gold-forming process at the Daping deposit, Ailaoshan gold belt, Yunnan, China, Ore Geol. Rev., 2009, vol. 36, pp. 235–249.

    Article  Google Scholar 

  23. Tikhomirov, P.L., Prokof’ev, V.Yu., Kal’ko, I.A., et al., Post-collisional magmatism of western Chukotka and Early Cretaceous tectonic rearrangement in northeastern Asia, Geotectonics, 2017, vol. 51, no. 2, pp. 131–151.

    Article  Google Scholar 

  24. Tshibubudze, A., Integrated strato-tectonic, U–Pb geochronology and metallogenic studies of the Oudalan-Gorouol volcano-sedimentary Belt (OGB) and the Gorom-Gorom granitoid terrane (GGGT), Burkina Faso and Niger, West Africa, PhD Thesis, Univ. Wittwatersrand, Johannesburg, 2015. http://www.tectonique.net/waxi_theses/2015_Tshibubudze.pdf. Cited April 27, 2019.

  25. Vikentieva, O.V., REE distribution in scheelite of gold–ore deposits, in Tez. Godich. sobr. RMO (Trans. Annu. Meet. Russ. Miner. Soc.), St. Petersburg, 2006, pp. 123–124.

  26. Zhu, Y.-N. and Peng, J.-T., Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at the Woxi orogenic Au–Sb–W deposit, western Hunan, South China, Ore Geol. Rev., 2015, vol. 65, pp. 55–69.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to O.V. Vikentieva (Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences) and V.V. Smolensky (St. Petersburg Mining University) for their valuable comments, which improved the manuscript. We thank the geologists of ZAO Bazovye Metally for the samples that were kindly placed at our disposal.

Funding

This study was supported by the Russian Foundation for Basic Researches (project no. 18-35-20034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Nagornaya.

Additional information

Translated by I. Baksheev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagornaya, E.V., Baksheev, I.A., Anosova, M.O. et al. Scheelite of the Kekura Gold Deposit, Western Chukchi Peninsula: Trace Elements and Fluid Inclusions. Moscow Univ. Geol. Bull. 75, 159–167 (2020). https://doi.org/10.3103/S0145875220020052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0145875220020052

Navigation