Skip to main content
Log in

An Empirical Model for Prediction of Environmental Attenuation of Millimeter Waves

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The latest trends in mobile technology have increased the need for higher spectrum bands from every sector of using wireless applications. As the internet is growing rapidly it has increased the need for wireless services, which require radio spectrum and thus becoming more congested. Engineers show that due to high demand for spectrum, government authorities are regularly introducing schemes to regulate the use of spectrum. New researches are enhancing to resolve the crisis. In order to fix the spectrum for future technologies, propagation studies are required. In this paper an empirical model is proposed for prediction of attenuation due to clouds and fog based on the Rayleigh approximation model. In this model a new concept of calculating dielectric constants of water are also introduced. The implementation results of the proposed model are compared with the other cloud attenuation models. The proposed model proved to be better than the ITU-R model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Seybold, J. S. (2005). Introduction to RF propagation. New York: Wiley.

    Book  Google Scholar 

  2. Omotosho, T. V., Mandeep, J. S., & Abdullah, M. (2011). Atmospheric gas impact on fixed satellite communication link a study of its effects at Ku, Ka and V bands in Nigeria. In 2011 IEEE international conference on space science and communication (IconSpace). IEEE.

  3. Frey, T. L. (1999). The Effects of the atmosphere and weather on the performance of a mm-wave communication link. Applied Microwave and Wireless, 11, 76–81.

    Google Scholar 

  4. Magono, C., & Nakamura, T. (1965). Aerodynamic studies of falling snowflakes. Journal of the Meteorological Society of Japan. Ser. II, 43(3), 139–147.

    Article  Google Scholar 

  5. Gunn, K. L. S., & Marshall, J. S. (1958). The distribution with size of aggregate snowflakes. Journal of Meteorology, 15, 452–461.

    Article  Google Scholar 

  6. Sekhon, R. S., & Srivastava, R. C. (1970). Snow size spectra and radar reflectivity. Journal of the Atmospheric Sciences, 27(2), 299–307.

    Article  Google Scholar 

  7. Oguchi, T. (1983). Electromagnetic wave propagation and scattering in rain and other hydrometeors. Proceedings of the IEEE, 71, 9.

    Article  Google Scholar 

  8. Douglas, R. H. (1963) Hail size distributions of Alberta hail samples. Mc Gill University, Montreal, Stormy Wea. Gp. Sci. Rep. MW-36, (pp. 55–71).

  9. Harb, K., et al. (2012). A proposed method for dust and sand storms effect on satellite communication networks. Innovations on Communication Theory INCT, (Istanbul, Turkey) (pp. 33–37).

  10. Harb, K., et al. (2013). Systems adaptation for satellite signal under dust, sand and gaseous attenuations. Journal of Wireless Networking and Communications, 3(3), 39–49.

    Google Scholar 

  11. Harb, K., et al. (2015). Ka-band VSAT system models under measured DUSA attenuation. In: SPACOMM, the seventh international conference in advances in satellite and space communications.

  12. Hossain, M. S., & Samad, M. A. (2015). The tropospheric scintillation prediction of earth-to-satellite link for Bangladeshi climatic condition. Serbian Journal of Electrical Engineering, 12(3), 263–273.

    Article  Google Scholar 

  13. Del Pino, P. G., et al. (2008). Tropospheric scintillation measurements on a Ka-Band satellite link in Madrid. URSI.

  14. van de Kamp, M. M. J. L., et al. (1999). Improved models for long-term prediction of tropospheric scintillation on slant paths. IEEE Transactions on antennas and propagation, 47(2), 249–260.

    Article  Google Scholar 

  15. World Meteorological Organization, ed. (1975). Cirrus, International Cloud Atlus.

  16. Gunn, K. L. S., & East, T. W. R. (1954). The microwave properties of precipitation particles. Quarterly Journal of the Royal Meteorological Society, 80(346), 522–545.

    Article  Google Scholar 

  17. Staelin, D. H. (1966). Measurements and interpretation of the microwave spectrum of the terrestrial atmosphere near 1-centimeter wavelength. Journal of Geophysical Research, 71(12), 2875–2881.

    Article  Google Scholar 

  18. Slobin, S. D. (1982). Microwave noise temperature and attenuation of clouds: Statistics of these effects at various sites in the United States, Alaska, and Hawaii. Radio Science, 17(6), 1443–1454.

    Article  Google Scholar 

  19. Altshuler, E. E., & Marr, R. A. (1989). Cloud attenuation at millimeter wavelengths. IEEE Transactions on Antennas and Propagation, 37(11), 1473–1479.

    Article  Google Scholar 

  20. Liebe, H. J. (1989). MPM—An atmospheric millimeter-wave propagation model. International Journal of Infrared and Millimeter Waves, 10(6), 631–650.

    Article  Google Scholar 

  21. Salonen, E., & Uppala, S. (1991). New prediction method of cloud attenuation. Electronics Letters, 27(12), 1106–1108.

    Article  Google Scholar 

  22. Dissanayake, A., Allnutt, J., & Haidara, F. (1997). A prediction model that combines rain attenuation and other propagation impairments along earth-satellite paths. IEEE Transactions on Antennas and Propagation, 45(10), 1546–1558.

    Article  Google Scholar 

  23. Dintelmann, F., & Ortgies, G. (1989). Semiempirical model for cloud attenuation prediction. Electronics Letters, 25(22), 1487–1488.

    Article  Google Scholar 

  24. Konefal, T., et al. (2000). Prediction of monthly and annual availabilities on 10–50 GHz satellite-Earth and aircraft-to-aircraft links. IEE Proceedings-Microwaves, Antennas and Propagation, 147(2), 122–127.

    Article  Google Scholar 

  25. Wrench, C. L., Davies, P. G., & Ramsden, J. (1999). Global predictions of slant path attenuation on earth-space links at EHF. International Journal of Satellite Communications and Networking, 17(2-3), 177–186.

    Article  Google Scholar 

  26. Attenuation due to cloud and fog, Recommendation ITU-R P.840-5, P Series Radio wave propagation.

  27. Westwater, Ed R. (1978). The accuracy of water vapor and cloud liquid determination by dual-frequency ground-based microwave radiometry. Radio Science, 13(4), 677–685.

    Article  Google Scholar 

  28. Papatsoris, A. D. (1997). Effect of ice clouds on millimetre-wave aeronautical and satellite communications. Electronics Letters, 33(21), 1766–1768.

    Article  Google Scholar 

  29. Dissanayake, A., Allnutt, J., & Haidara, F. (2001). Cloud attenuation modelling for SHF and EHF applications. International journal of satellite communications, 19(3), 335–345.

    Article  Google Scholar 

  30. Sarkar, S. K., Ahmad, I., & Gupta, M. M. (2005). Statistical morphology of cloud occurrences and cloud attenuation over Hyderabad, India. Indian Journal of Radio and Space Physics, 34, 119–124.

    Google Scholar 

  31. Sarkar, S. K., & Kumar, A. (2005). Cloud attenuation and cloud noise temperature over some Indian eastern station for satellite communication. Indian Journal of Radio and Space Physics, 36, 375–378.

    Google Scholar 

  32. Sarkar, S. K., & Kumar, A. (2007). Recent studies on cloud and precipitation phenomena for propagation characteristics over India. Indian Journal of Radio and Space Physics, 36, 502–513.

    Google Scholar 

  33. Mandeep, J. S., & Hassan, S. I. S. (2008). Cloud attenuation for satellite applications over equatorial climate. IEEE Antennas and Wireless Propagation Letters, 7, 152–154.

    Article  Google Scholar 

  34. Maitra, Animesh, & Chakraborty, Swastika. (2009). Cloud liquid water content and cloud attenuation studies with radiosonde data at a tropical location. Journal of Infrared, Millimeter, and Terahertz Waves, 30(4), 367–373.

    Article  Google Scholar 

  35. Mattioli, V., et al. (2009). Analysis and improvements of cloud models for propagation studies. Radio Science, 44(2), 1–13.

    Article  Google Scholar 

  36. Omotosho, T. V., Mandeep, J. S., & Abdullah, M. (2014). Cloud attenuation studies of the six major climatic zones of Africa for Ka and V satellite system design. Annals of Geophysics, 56(5), 0568.

    Google Scholar 

  37. Mandal, B. K., Bhattacharyya, D., & Kang, S. (2014). Attenuation of signal at a tropical location with radiosonde data due to cloud. International Journal of Smart Home, 8(1), 15–22.

    Article  Google Scholar 

  38. Kokab, A. A. R., & Edreis, H. A. (2016). Attenuation(fading) due to clouds south Kordofan (Sudan). IOSR Journal of Electronics and Communication Engineering IOSR-JECE, 11(3), 99–100.

    Google Scholar 

  39. Battaglia, A., Mroz, K., Watters, D., & Ardhuin, F. (2019). GPM-derived climatology of attenuation due to clouds and precipitation at Ka-band.IEEE Transactions on Geoscience and Remote Sensing, 58(3), 1812–1820.

    Article  Google Scholar 

  40. Rakshit, G., Quibus, L., Vanhoenacker-Janvier, D., & Maitra, A. (2019). Using meteorological data for clear sky and cloud attenuation in Belgium and India. In 2019 URSI Asia-Pacific radio science conference (AP-RASC) (pp. 1–1). IEEE.

  41. Yuan, F., Lee, Y. H., Meng, Y. S., Manandhar, S., & Ong, J. T. (2019). High resolution ITU-R cloud attenuation model for satellite communications in tropical region. IEEE Transactions on Antennas and Propagation, 67(9), 6115–6122.

    Article  Google Scholar 

  42. Shelters, B., Elmore, B., Ethridge, J., Schmidt, J., Burley, J., Fiorino, S., Sugrue, J., & Terzuoli, A. (2018). Calculation of Long-term tropospheric attenuation statistics using weather cubes. In IGARSS 2018—2018 IEEE international geoscience and remote sensing symposium (pp. 467–470). IEEE.

  43. Elsheikh, E. A., Suliman, F. M., Rafiqul, I. M., Habaebi, M. H., Ismail, A. F., Elshaikh, Z. E. O., & Chebil, J. (2018). Air born dust particles effects on microwave propagation in arid-area. In 2018 7th international conference on computer and communication engineering (ICCCE) (pp. 412–415). IEEE.

  44. Goldhirsh, J. (2001). Attenuation and backscatter from a derived two-dimensional duststorm model. IEEE Transactions on Antennas and Propagation, 49(12), 1703–1711.

    Article  Google Scholar 

  45. David, N., Alpert, P., & Messer, H. (2013). The potential of commercial microwave networks to monitor dense fog-feasibility study. Journal of geophysical research: atmospheres, 118(20), 11–750.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Saxena, K., Kumar, V. et al. An Empirical Model for Prediction of Environmental Attenuation of Millimeter Waves. Wireless Pers Commun 115, 809–826 (2020). https://doi.org/10.1007/s11277-020-07599-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07599-2

Keywords

Navigation