Skip to main content
Log in

A DFT study of reactions of Ru(III) anticancer drug KP1019 with 8-oxoguanine and 8-oxoadenine

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The cytotoxic activities of KP1019 and other Ru(III) drugs are believed to be associated with their binding with DNA. Here, we report the density functional theory (DFT) study of reactions of KP1019 drug at the O6 and O8 sites of 8-oxoguanine (8-oxoG) and the O8 site of 8-oxoadenine (8-oxoA). 8-OxoG is predominantly formed in oxidative stress and can cause mutation and cancer. It is found that the barrier free energies (ΔGb) of these reactions obey the following trend: O8 (8-oxoG) < O8 (8-oxoA) < O6 (8-oxoG), at different levels of theory in gas phase and aqueous media. The ΔGb of reaction at the O8 (8-oxoG) is found to be 10.96 (13.81) kcal/mol at the M06-2X/(LanL2DZ+6-311+G**) level of theory in gas phase (aqueous media). The rate constant of reaction at the O8 (8-oxoG) site in aqueous media is 4.6 × 102 s−1. The reaction free energies (ΔGf) and reaction enthalpies (ΔHf) of all the reactions are appreciably negative in both gas phase and aqueous media which indicate that the reaction of mono-aquated KP1019 at the O6 and O8 sites of 8-oxoG as well as at the O8 site of 8-oxoA would occur spontaneously. Further, our calculations demonstrate that KP1019 would react with 8-oxoG more favourably as compared with guanine. Thus, it predicts that the main mechanism of the action of KP1019 drug might be due to its binding with the O8 site of 8-oxoG in biological media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bergamo A, Gaiddon C, Schellens JH, Beijnen JH, Sava G (2012) Approaching tumour therapy beyond platinum drugs: status of the art and perspectives of ruthenium drug candidates. J Inorg Biochem 106(1):90–99. https://doi.org/10.1016/j.jinorgbio.2011.09.030

    Article  CAS  PubMed  Google Scholar 

  2. Levina A, Mitra A, Lay PA (2009) Recent developments in ruthenium anticancer drugs. Metallomics 1(6):458–470. https://doi.org/10.1039/b904071d

    Article  CAS  PubMed  Google Scholar 

  3. Clarke MJ, Bitler S, Rennert D, Buchbinder M, Kelman AD (1980) Reduction and subsequent binding of ruthenium ions catalyzed by subcellular components. J Inorg Biochem 12(1):79–87

    Article  CAS  PubMed  Google Scholar 

  4. Antonarakis ES, Emadi A (2010) Ruthenium-based chemotherapeutics: are they ready for prime time? Cancer Chemother Pharmacol 66(1):1–9. https://doi.org/10.1007/s00280-010-1293-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bacac M, Hotze AC, van der Schilden K, Haasnoot JG, Pacor S, Alessio E, Sava G, Reedijk J (2004) The hydrolysis of the anti-cancer ruthenium complex NAMI-A affects its DNA binding and antimetastatic activity: an NMR evaluation. J Inorg Biochem 98(2):402–412

    Article  CAS  PubMed  Google Scholar 

  6. Bergamo A, Sava G (2011) Ruthenium anticancer compounds: myths and realities of the emerging metal-based drugs. Dalton Trans (Cambridge, England : 2003) 40(31):7817–7823. https://doi.org/10.1039/c0dt01816c

    Article  CAS  Google Scholar 

  7. Bešker N, Coletti C, Marrone A, Re N (2008) Aquation of the ruthenium-based anticancer drug NAMI-A: a density functional study. J Phys Chem B 112(13):3871–3875

    Article  PubMed  Google Scholar 

  8. Cebrian-Losantos B, Reisner E, Kowol CR, Roller A, Shova S, Arion VB, Keppler BK (2008) Synthesis and reactivity of the aquation product of the antitumor complex trans-[Ru(III)Cl4(indazole)2]. Inorg Chem 47(14):6513–6523. https://doi.org/10.1021/ic800506g

    Article  CAS  PubMed  Google Scholar 

  9. Domotor O, Hartinger CG, Bytzek AK, Kiss T, Keppler BK, Enyedy EA (2013) Characterization of the binding sites of the anticancer ruthenium(III) complexes KP1019 and KP1339 on human serum albumin via competition studies. J Biol Inorg Chem 18(1):9–17. https://doi.org/10.1007/s00775-012-0944-6

    Article  CAS  PubMed  Google Scholar 

  10. Dwyer BG, Johnson E, Cazares E, Holman KLM, Kirk SR (2018) Ruthenium anticancer agent KP1019 binds more tightly than NAMI-A to tRNAPhe. J Inorg Biochem 182:177–183

    Article  CAS  PubMed  Google Scholar 

  11. Shah PK, Shukla PK (2020) Effect of axial ligands on the mechanisms of action of Ru (III) complexes structurally similar to NAMI-A: a DFT study. Struct Chem 31(2):679–689. https://doi.org/10.1007/s11224-019-01439-1

  12. Shah PK, Shukla P (2019) Effect of axial ligands on the mechanisms of action of Ru (III) complexes structurally similar to NAMI-A: a DFT study. Struct Chem:1–11

  13. Chatlas J, Van Eldik R, Keppler B (1995) Spontaneous aquation reactions of a promising tumor inhibitor trans-imidazolium-tetrachlorobis (imidazole) ruthenium (III), trans-HIm [RuCl4 (Im) 2]. Inorg Chim Acta 233(1–2):59–63

    Article  CAS  Google Scholar 

  14. Alessio E, Messori L (2019) NAMI-A and KP1019/1339, two iconic ruthenium anticancer drug candidates face-to-face: a case story in medicinal inorganic chemistry. Molecules 24(10):1995

    Article  CAS  PubMed Central  Google Scholar 

  15. Egger A, Arion VB, Reisner E, Cebrian-Losantos B, Shova S, Trettenhahn G, Keppler BK (2005) Reactions of potent antitumor complex trans-[Ru(III)Cl4(indazole)2]- with a DNA-relevant nucleobase and thioethers: insight into biological action. Inorg Chem 44(1):122–132. https://doi.org/10.1021/ic048967h

    Article  CAS  PubMed  Google Scholar 

  16. Brabec V, Novakova O (2006) DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug Resist Updat 9(3):111–122. https://doi.org/10.1016/j.drup.2006.05.002

    Article  CAS  PubMed  Google Scholar 

  17. Pluim D, van Waardenburg RC, Beijnen JH, Schellens JH (2004) Cytotoxicity of the organic ruthenium anticancer drug Nami-A is correlated with DNA binding in four different human tumor cell lines. Cancer Chemother Pharmacol 54(1):71–78

    Article  CAS  PubMed  Google Scholar 

  18. Novakova O, Kasparkova J, Vrana O, van Vliet PM, Reedijk J, Brabec V (1995) Correlation between cytotoxicity and DNA binding of polypyridyl ruthenium complexes. Biochemistry 34(38):12369–12378. https://doi.org/10.1021/bi00038a034

    Article  CAS  PubMed  Google Scholar 

  19. Gallori E, Vettori C, Alessio E, Vilchez FG, Vilaplana R, Orioli P, Casini A, Messori L (2000) DNA as a possible target for antitumor ruthenium(III) complexes. Arch Biochem Biophys 376(1):156–162. https://doi.org/10.1006/abbi.1999.1654

    Article  CAS  PubMed  Google Scholar 

  20. Gossens C, Tavernelli I, Rothlisberger U (2009) Binding of organometallic ruthenium (II) anticancer compounds to nucleobases: a computational study. J Phys Chem A 113(43):11888–11897

    Article  CAS  PubMed  Google Scholar 

  21. Merlino A (2016) Interactions between proteins and Ru compounds of medicinal interest: a structural perspective. Coord Chem Rev 326:111–134

    Article  CAS  Google Scholar 

  22. Sun J, Huang Y, Zheng C, Zhou Y, Liu Y, Liu J (2015) Ruthenium (II) complexes interact with human serum albumin and induce apoptosis of tumor cells. Biol Trace Elem Res 163(1–2):266–274. https://doi.org/10.1007/s12011-014-0165-7

    Article  CAS  PubMed  Google Scholar 

  23. Messori L, Kratz F, Alessio E (1996) The interaction of the antitumor complexes Na[trans-RuCl(4) (DMSO)(Im)] and Na[trans-RuCl(4)(DMSO)(Ind)] with apotransferrin: a spectroscopic study. Met Based Drugs 3(1):1–9. https://doi.org/10.1155/mbd.1996.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Neeley WL, Essigmann JM (2006) Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem Res Toxicol 19(4):491–505

    Article  CAS  PubMed  Google Scholar 

  25. Shukla PK, Jena N, Mishra PC (2011) Quantum theoretical study of molecular mechanisms of mutation and cancer-a review. Proc Natl Acad sci, India, Sect A Phys Sci 81(Part 2):79–98

  26. Jena N (2012) DNA damage by reactive species: mechanisms, mutation and repair. J Biosci 37(3):503–517

    Article  CAS  PubMed  Google Scholar 

  27. Sliwinska A, Kwiatkowski D, Czarny P, Toma M, Wigner P, Drzewoski J, Fabianowska-Majewska K, Szemraj J, Maes M, Galecki P (2016) The levels of 7, 8-dihydrodeoxyguanosine (8-oxoG) and 8-oxoguanine DNA glycosylase 1 (OGG1)–a potential diagnostic biomarkers of Alzheimer’s disease. J Neurol Sci 368:155–159

    Article  CAS  PubMed  Google Scholar 

  28. Burrows CJ, Muller JG, Kornyushyna O, Luo W, Duarte V, Leipold MD, David SS (2002) Structure and potential mutagenicity of new hydantoin products from guanosine and 8-oxo-7, 8-dihydroguanine oxidation by transition metals. Environ Health Perspect 110(suppl 5):713–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bruner SD, Norman DP, Verdine GL (2000) Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403(6772):859–866

    Article  CAS  PubMed  Google Scholar 

  30. Bhattacharjee K, Shukla PK (2018) Does 8-nitroguanine form 8-oxoguanine? An insight from its reaction with• OH radical. J Phys Chem B 122(6):1852–1861

  31. Bhattacharjee K, Mishra PC, Shukla PK (2017) Mechanism of methylation of 8-oxoguanine due to its reaction with methyldiazonium ion. Mol Simul 43(3):196–204

  32. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41(2):157–167

    Article  CAS  PubMed  Google Scholar 

  33. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09 C. 01. Gaussian Inc, Wallingford

    Google Scholar 

  34. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102(11):1995–2001

    Article  CAS  Google Scholar 

  35. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24(6):669–681

    Article  CAS  PubMed  Google Scholar 

  36. Dennington R, Keith T, Millam J (2009) GaussView, version 5

Download references

Funding

This work received financial assistance from the Science and Engineering Research Board (SERB), Govt. of India, New Delhi, under the research grant (Fast Track Project No. SR/FTP/PS-047/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Shukla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, P.K., Shukla, P.K. A DFT study of reactions of Ru(III) anticancer drug KP1019 with 8-oxoguanine and 8-oxoadenine. Struct Chem 31, 2087–2092 (2020). https://doi.org/10.1007/s11224-020-01563-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01563-3

Keywords

Navigation