Skip to main content
Log in

Fractal Model of Complex Near-Surface-Domain Structure of Highly Anisotropic Uniaxial Single Crystals

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

This work proposes a new fractal model of a complex near-surface domain structure that assembles itself in highly anisotropic uniaxial single crystals, and which is based on a previously unknown modification of the Sierpinski carpet. The simulation algorithm is described and an example of its application is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. F. A. Bitter, “On inhomogeneities in the magnetization of ferromagnetic materials,” Phys. Rev. 38, 1903–1905 (1931).

    Article  Google Scholar 

  2. L. V. Hamos and P. A. Thiessen, “Über die Sichtbarmachung von Bezirken verschiedenen ferromagnetischen Zustands fester Körper,” Z. F. Phys. B 71, 442–444 (1931).

    Article  Google Scholar 

  3. N. S. Akulov and M. V. Degtiar, “Uber die komplizierte magnetische Struktur der ferromagnetischen Einkristalle,” Ann. Phys. 5, 750–756 (1932).

  4. H. J. Williams, E. J. Foster, and E. A. Wood, “Observation of magnetic domains by the Kerr effect,” Phys. Rev. 82, 119 (1951).

    Article  Google Scholar 

  5. C. A. Fowler and E. M. Fryter, “Magnetic domains on silicon iron by the longitudinal Kerr effect,” Phys. Rev. 86, 426 (1952).

    Article  Google Scholar 

  6. J. F. Dillon, “Optical properties of several ferrimagnetic garnets,” J. Appl. Phys. 29, 539–541 (1958).

    Article  CAS  Google Scholar 

  7. L. Mayer, “Mirror microscopy of magnetic domains,” J. Appl. Phys. 28, 975983 (1957).

    Google Scholar 

  8. H. W. Fuller and M. E. Hale, “Determination of magnetization distribution in thin films using electron microscopy,” J. Appl. Phys. 31, 238–248 (1960).

    Article  CAS  Google Scholar 

  9. B. Kostyshyn, J. E. Brophy, and D. D. Boshon, “External fields from domain walls of cobalt film,” J. Appl. Phys. 31, 772–774 (1960).

    Article  Google Scholar 

  10. G. S. Kandaurova and A. E. Sviderskii, “Excited state and spiral dynamic domain structure in a magnetic crystal,” Pis’ma Zh. Eksp. Teor. Fiz. 47, 410–412 (1988).

    CAS  Google Scholar 

  11. G. S. Kandaurova and A. E. Sviderskii, “Observation of the autowave state and stable dynamic structures in multi-domain magnetic films,” Pis’ma Zh. Tekh. Fiz. 14, 777–780 (1988).

    CAS  Google Scholar 

  12. G. S. Kandaurova, “Chaos, order and beauty in the world of magnetic domains,” Izv. URGU, No. 5, 31–52 (1997).

    Google Scholar 

  13. G. S. Kandaurova, “New phenomena in the low-frequency dynamics of magnetic domain ensembles,” Phys.-Usp. 45, 1051–1072 (2002).

    Article  CAS  Google Scholar 

  14. F. V. Lisovskii and E. G. Mansvetova, “New types of dynamic self-organization of magnetic moment,” Pis’ma Zh. Eksp. Teor. Fiz. 55, 34–37 (1992).

    Google Scholar 

  15. F. V. Lisovskii, E. G. Mansvetova, E. P. Nikolaeva, and A. V. Nikolaev, “Dynamic self-organization and symmetry of magnetic moment distributions in thin films,” Zh. Eksp. Teor. Fiz. 103, 213–233 (1993).

    CAS  Google Scholar 

  16. F. V. Lisovskii and E. G. Mansvetova, “New types of dynamic self-organization of the magnetic moment during pulsation oscillations, dynamic clustering or drift of two-dimensional domain arrays in thin films,” Pis’ma Zh. Eksp. Teor. Fiz. 58, 836–839 (1993).

    CAS  Google Scholar 

  17. F. V. Lisovskii, E. G. Mansvetova, and Ch. M. Pak, “Ordering scenarios and structure of self-organizing two-dimensional domain arrays in thin magnetic films,” Zh. Eksp. Teor. Fiz. 108, 1031–1051 (1995).

    CAS  Google Scholar 

  18. B. M. Smirnov, “Fractal clusters,” Usp. Fiz. Nauk 149, 177–219 (1986).

    Article  CAS  Google Scholar 

  19. F. V. Lisovskii, L. I. Lukashenko, and E. G. Mansvetova, “Thermodynamically stable fractal-like domain structures in magnetic films,” JETP Lett. 79, 352–354 (2004).

    Article  CAS  Google Scholar 

  20. W. Sierpinski, “Sur une courbe cantorienne qui contient une image binniro que et continue de toute courbe donnée,” C. R. Acad. Sci., Ser. Gen. Vie Sci. 162, 629–632 (1916).

    Google Scholar 

  21. J. Feder, Fractals (Plenum, New York, 1988; Nauka, Moscow, 1991).

  22. C. Swoboda, M. Martens, and G. Meier, “Control of spin-wave excitations in deterministic fractals,” Phys. Rev. B 91, 064416 (2015).

    Article  Google Scholar 

  23. J. Huang, Z. Shi, and W. Huang, “Multiple band gaps of phononic crystals with quasi-Sierpinski carpet unit cells,” Phys. B 516, 48–54 (2017).

    Article  CAS  Google Scholar 

  24. W. Arshad and J. D. Xu, “Design of Sierpinski carpet fractal antennas by improving the performance and reducing the size for wide band and mobile applications,” Int. J. Hybrid Inf. Technol. 8, 245–252 (2015).

    Google Scholar 

  25. S. V. Komogortsev, R. S. Iskhakov, and V. A. Fel’k, “Fractal dimension effect on the magnetization curves of exchange-coupled clusters of magnetic nanoparticles,” J. Exp. Theor. Phys 128, 754–760 (2019).

    Article  CAS  Google Scholar 

  26. O. V. Zhdanova, M. B. Lyakhova, and Y. G. Pastushenkov, “Magnetocrystalline anisotropy, magnetization curves, and domain structure of FeB single crystals,” Phys. Met. Metallogr. 112, 224–230 (2011).

    Article  Google Scholar 

  27. L. V. Lebedeva, E. M. Semenova, M. B. Lyakhova, and M. A. Pastushenkova, “Some features of magnetic domain structure of RFe11Ti (R = Gd, Dy, Ho, Er, Y) intermetallics,” Gornyi Inform.-Anal. Byull., Otd. vyp. No. 1, 386 (2007).

  28. Yu. G. Pastushenkov, K. P. Skokov, and A. I. Zhukov, “Quantitative analysis of domain structure and rapid search for new materials for permanent magnets,” Met. Sci. Heat Treat. 60, 544–547 (2018).

    Article  CAS  Google Scholar 

Download references

Funding

The work is funded by the state assignment of the Russian Federation under the theme 0030-2019-0014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Lisovskii.

Additional information

Translated by O. Golovnya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arzamastseva, G.V., Evtihov, M.G., Lisovskii, F.V. et al. Fractal Model of Complex Near-Surface-Domain Structure of Highly Anisotropic Uniaxial Single Crystals. Phys. Metals Metallogr. 121, 408–411 (2020). https://doi.org/10.1134/S0031918X2005004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X2005004X

Keywords:

Navigation