Skip to main content

Advertisement

Log in

Extracting and Selecting Robust Radiomic Features from PET/MR Images in Nasopharyngeal Carcinoma

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Objectives

This work aims to study the variation, robustness, and feature redundancy of PET/MR radiomic features in the primary tumor of nasopharyngeal carcinoma (NPC).

Procedures

PET/MR scans of 21 NPC patients were used in this study. The primary tumor volumes were defined using PET, T2-weighted-MR (T2-MR), and diffusion-weighted MR (DW-MR) images. A random-dilation-erosion method was used to simulate 10 sets of tumor volumes for identifying features invariant with manual segmentation uncertainties. Feature robustness was evaluated against imaging modalities, pixel sizes, slice thickness, and grey-level bin sizes using intraclass correlation coefficient (ICC) and spearman correlation coefficient. Feature redundancy was analyzed using the hierarchical cluster analysis.

Results

Voxel size of 0.5 × 0.5 × 1.0 mm3 was found optimal for robust feature extraction from PET and MR. Normalized grey level of 64 and 128 was suggested for PET and MR, respectively. The features from wavelet-transformed images were less stable than those from the original images. The robustness analysis and volume correlation analysis identified 335 (62.04 %) PET features, 240 (44.44 %) T2-MR features, and 366 (67.78 %) DW-MR features. The cluster analysis grouped PET, T2-MR, and DW-MR features into 106, 83, and 133 representative features, respectively.

Conclusions

The present study analyzed and identified robust features extracted from tumor volumes on PET/MR, which can provide guidance and promote standardization for PET/MR radiomic studies in NPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. An X, Wang FH, Ding PR, Deng L, Jiang WQ, Zhang L, Shao JY, Li YH (2011) Plasma Epstein-Barr virus DNA level strongly predicts survival in metastatic/recurrent nasopharyngeal carcinoma treated with palliative chemotherapy. Cancer 117:3750–3757

    Article  CAS  PubMed  Google Scholar 

  2. Peng H, Tang L-L, Chen B-B, Chen L, Li WF, Mao YP, Liu X, Zhang Y, Liu LZ, Tian L, Guo Y, Sun Y, Ma J (2018) Optimizing the induction chemotherapy regimen for patients with locoregionally advanced nasopharyngeal carcinoma: a big-data intelligence platform-based analysis. Oral Oncol 79:40–46

    Article  PubMed  Google Scholar 

  3. Tang X-R, Li Y-Q, Liang S-B, Jiang W, Liu F, Ge WX, Tang LL, Mao YP, He QM, Yang XJ, Zhang Y, Wen X, Zhang J, Wang YQ, Zhang PP, Sun Y, Yun JP, Zeng J, Li L, Liu LZ, Liu N, Ma J (2018) Development and validation of a gene expression-based signature to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma: a retrospective, multicentre, cohort study. Lancet Oncol 19:382–393

    Article  CAS  PubMed  Google Scholar 

  4. Lee AW, Zong JF, Pan JJ, Choi HC, Sze HC (2019) Staging of nasopharyngeal carcinoma based on the 8th edition of the AJCC/UICC staging system. In nasopharyngeal carcinoma. Elsevier, pp 179-203

  5. Lai V, Khong PL (2014) Updates on MR imaging and 18F-FDG PET/CT imaging in nasopharyngeal carcinoma. Oral Oncol 50:539–548

    Article  PubMed  Google Scholar 

  6. Lambin P, Leijenaar RT, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762

    Article  PubMed  Google Scholar 

  7. Shi L, Rong Y, Daly M, Dyer B, Benedict S, Qiu J, Yamamoto T (2020) Cone-beam computed tomography-based delta-radiomics for early response assessment in radiotherapy for locally advanced lung cancer. Phys Med Biol 65:015009

    Article  CAS  PubMed  Google Scholar 

  8. Zhang B, Tian J, Dong D, Gu D, Dong Y, Zhang L, Lian Z, Liu J, Luo X, Pei S, Mo X, Huang W, Ouyang F, Guo B, Liang L, Chen W, Liang C, Zhang S (2017) Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma. Clin Cancer Res 23:4259–4269

    Article  PubMed  Google Scholar 

  9. Zhang L-L, Huang M-Y, Li Y, Liang JH, Gao TS, Deng B, Yao JJ, Lin L, Chen FP, Huang XD, Kou J, Li CF, Xie CM, Lu Y, Sun Y (2019) Pretreatment MRI radiomics analysis allows for reliable prediction of local recurrence in non-metastatic T4 nasopharyngeal carcinoma. EBioMedicine 42:270–280

    Article  PubMed Central  PubMed  Google Scholar 

  10. Zhang L, Dong D, Li H, Tian J, Ouyang F, Mo X, Zhang B, Luo X, Lian Z, Pei S, Dong Y, Huang W, Liang C, Liu J, Zhang S (2019) Development and validation of a magnetic resonance imaging-based model for the prediction of distant metastasis before initial treatment of nasopharyngeal carcinoma: a retrospective cohort study. EBioMedicine 40:327–335

    Article  PubMed Central  PubMed  Google Scholar 

  11. Wang G, He L, Yuan C, Huang Y, Liu Z, Liang C (2018) Pretreatment MR imaging radiomics signatures for response prediction to induction chemotherapy in patients with nasopharyngeal carcinoma. Eur J Radiol 98:100–106

    Article  PubMed  Google Scholar 

  12. Lv W, Yuan Q, Wang Q, et al. (2019) Radiomics analysis of PET and CT components of PET/CT imaging integrated with clinical parameters: application to prognosis for nasopharyngeal carcinoma. Mol Imaging Biol 1–11

  13. Peng H, Dong D, Fang M, et al. (2019) Prognostic value of deep learning PET/CT-based radiomics: potential role for future individual induction chemotherapy in advanced nasopharyngeal carcinoma. Clin Cancer Res 3065.2018

  14. Chan S-C, Yeh C-H, Yen T-C, Ng SH, Chang JTC, Lin CY, Yen-Ming T, Fan KH, Huang BS, Hsu CL, Chang KP, Wang HM, Liao CT (2018) Clinical utility of simultaneous whole-body 18 F-FDG PET/MRI as a single-step imaging modality in the staging of primary nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging 45:1297–1308

    Article  PubMed  Google Scholar 

  15. Naqa IE (2014) The role of quantitative PET in predicting cancer treatment outcomes. Clin Translat Imaging 2:305–320

    Article  Google Scholar 

  16. Niu T, Yang P, Sun X, Mao T, Xu L, Yue N, Kuang Y, Shi L, Nie K (2018) Variations of quantitative perfusion measurement on dynamic contrast enhanced CT for colorectal cancer: implication of standardized image protocol. Phys Med Biol 63:165009

    Article  CAS  PubMed  Google Scholar 

  17. Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, Bellomi M (2018) Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp 2:36–36

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hatt M, Laurent B, Ouahabi A, Fayad H, Tan S, Li L, Lu W, Jaouen V, Tauber C, Czakon J, Drapejkowski F, Dyrka W, Camarasu-Pop S, Cervenansky F, Girard P, Glatard T, Kain M, Yao Y, Barillot C, Kirov A, Visvikis D (2018) The first MICCAI challenge on PET tumor segmentation. Med Image Anal 44:177–195

    Article  PubMed  Google Scholar 

  19. Orlhac F, Nioche C, Soussan M, Buvat I (2017) Understanding changes in tumor texture indices in PET: a comparison between visual assessment and index values in simulated and patient data. J Nucl Med 58:387–392

    Article  PubMed  Google Scholar 

  20. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D (2017) Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging 44:151–165

    Article  PubMed  Google Scholar 

  21. Sanduleanu S, Woodruff HC, de Jong EEC, van Timmeren JE, Jochems A, Dubois L, Lambin P (2018) Tracking tumor biology with radiomics: a systematic review utilizing a radiomics quality score. Radiother Oncol 127:349–360

    Article  PubMed  Google Scholar 

  22. Sala E, Mema E, Himoto Y, Veeraraghavan H, Brenton JD, Snyder A, Weigelt B, Vargas HA (2017) Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol 72:3–10

    Article  CAS  PubMed  Google Scholar 

  23. Lu L, Lv W, Jiang J, Ma J, Feng Q, Rahmim A, Chen W (2016) Robustness of radiomic features in [11 C] choline and [18 F] FDG PET/CT imaging of nasopharyngeal carcinoma: impact of segmentation and discretization. Mol Imaging Biol 18:935–945

    Article  CAS  PubMed  Google Scholar 

  24. Belli ML, Mori M, Broggi S, Cattaneo GM, Bettinardi V, Dell'Oca I, Fallanca F, Passoni P, Vanoli EG, Calandrino R, di Muzio N, Picchio M, Fiorino C (2018) Quantifying the robustness of [18F] FDG-PET/CT radiomic features with respect to tumor delineation in head and neck and pancreatic cancer patients. Phys Med 49:105–111

    Article  PubMed  Google Scholar 

  25. Berenguer R, Pastor-Juan MDR, Canales-Vazquez J et al (2018) Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology 288:407–415

    Article  PubMed  Google Scholar 

  26. Hatt M, Majdoub M, Vallieres M, Tixier F, le Rest CC, Groheux D, Hindie E, Martineau A, Pradier O, Hustinx R, Perdrisot R, Guillevin R, el Naqa I, Visvikis D (2015) 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56:38–44

    Article  CAS  PubMed  Google Scholar 

  27. Yang X-L, Wang Y, Liang S-B, He SS, Chen DM, Chen HY, Lu LX, Chen Y (2018) Comparison of the seventh and eighth editions of the UICC/AJCC staging system for nasopharyngeal carcinoma: analysis of 1317 patients treated with intensity-modulated radiotherapy at two centers. BMC Cancer 18:606

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Cao C, Yang P, Xu Y, Niu T, Hu Q, Chen X (2019) Feasibility of multiparametric imaging with PET/MR in nasopharyngeal carcinoma: a pilot study. Oral Oncol 93:91–95

    Article  PubMed  Google Scholar 

  29. Tustison NJ, Avants BB, Cook PA, Yuanjie Zheng, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320

    Article  PubMed Central  PubMed  Google Scholar 

  30. Rasmussen JH, Nørgaard M, Hansen AE, Vogelius IR, Aznar MC, Johannesen HH, Costa J, Engberg AME, Kjær A, Specht L, Fischer BM (2017) Feasibility of multiparametric imaging with PET/MR in head and neck squamous cell carcinoma. J Nucl Med 58:69–74

    Article  CAS  PubMed  Google Scholar 

  31. Frings V, van Velden FHP, Velasquez LM, Hayes W, van de Ven PM, Hoekstra OS, Boellaard R (2014) Repeatability of metabolically active tumor volume measurements with FDG PET/CT in advanced gastrointestinal malignancies: a multicenter study. Radiology 273:539–548

    Article  PubMed  Google Scholar 

  32. Koçak B, Durmaz EŞ, Ateş E, Kılıçkesmez Ö (2019) Radiomics with artificial intelligence: a practical guide for beginners. Diagn Interv Radiol 25:485–495

    Article  PubMed Central  PubMed  Google Scholar 

  33. Shi L, He Y, Yuan Z et al (2018) Radiomics for response and outcome assessment for non-small cell lung cancer. Technol Cancer Res Treat 17:1533033818782788–1533033818782788

    Article  PubMed Central  PubMed  Google Scholar 

  34. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163

    Article  PubMed Central  PubMed  Google Scholar 

  35. Kim YJ, Lee H-J, Kim KG, Lee SH (2019) The effect of CT scan parameters on the measurement of CT radiomic features: a lung nodule phantom study. Comput Math Methods Med 2019:1–12

    Article  CAS  Google Scholar 

  36. Lu L, Lv W, Jiang J et al (2016) Robustness of textural features in 11C-choline and 18F-FDG PET/CT scans of nasopharyngeal carcinoma. J Nucl Med 57:1896

    Google Scholar 

  37. Shen X, Yang F, Yang P, et al. (2020) A contrast-enhanced computed tomography based radiomics approach for preoperative differentiation of pancreatic cystic neoplasm subtypes: a feasibility study Front Oncol 10

  38. Vallières M, Freeman CR, Skamene SR, El Naqa I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471–5496

    Article  PubMed  Google Scholar 

  39. Papp L, Rausch I, Grahovac M, Hacker M, Beyer T (2019) Optimized feature extraction for radiomics analysis of 18F-FDG PET imaging. J Nucl Med 60:864–872

    Article  PubMed  Google Scholar 

  40. Xu M, Fang M, Zou J, Yang S, Yu D, Zhong L, Hu C, Zang Y, Dong D, Tian J, Fang X (2019) Using biparametric MRI radiomics signature to differentiate between benign and malignant prostate lesions. Eur J Radiol 114:38–44

    Article  PubMed  Google Scholar 

  41. Zhao L, Lu Z, Jiang J, Zhou Y, Wu Y, Feng Q (2019) Automatic nasopharyngeal carcinoma segmentation using fully convolutional networks with auxiliary paths on dual-modality PET-CT images. J Digit Imaging 32:462–470

    Article  PubMed Central  PubMed  Google Scholar 

  42. Ma Z, Wu X, Song Q, Luo Y, Wang Y, Zhou J (2018) Automated nasopharyngeal carcinoma segmentation in magnetic resonance images by combination of convolutional neural networks and graph cut. Exp Ther Med 16:2511–2521

    PubMed Central  PubMed  Google Scholar 

  43. Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, Verlingue L, Brandao D, Lancia A, Ammari S, Hollebecque A, Scoazec JY, Marabelle A, Massard C, Soria JC, Robert C, Paragios N, Deutsch E, Ferté C (2018) A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol 19:1180–1191

    Article  CAS  PubMed  Google Scholar 

  44. Wu J, Gensheimer MF, Dong X et al (2016) Robust intratumor partitioning to identify high-risk subregions in lung cancer: a pilot study. Int J Radiat Oncol Biol Phys 95:1504–1512

    Article  PubMed Central  PubMed  Google Scholar 

  45. Popovtzer A, Ibrahim M, Tatro D, Feng FY, Ten Haken RK, Eisbruch A (2014) MRI to delineate the gross tumor volume of nasopharyngeal cancers: which sequences and planes should be used? Radiol Oncol 48:323–330

    Article  PubMed Central  PubMed  Google Scholar 

  46. Anderson CM, Sun W, Buatti JM et al (2014) Interobserver and intermodality variability in GTV delineation on simulation CT, FDG-PET, and MR images of head and neck cancer. Jacobs J Radiat Oncol 1:006–006

    PubMed Central  PubMed  Google Scholar 

  47. Fave X, Mackin D, Yang J, Zhang J, Fried D, Balter P, Followill D, Gomez D, Kyle Jones A, Stingo F, Fontenot J, Court L (2015) Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys 42:6784–6797

    Article  PubMed Central  PubMed  Google Scholar 

  48. Larue RTHM, Van De Voorde L, van Timmeren JE et al (2017) 4DCT imaging to assess radiomics feature stability: an investigation for thoracic cancers. Radiother Oncol 125:147–153

    Article  PubMed  Google Scholar 

  49. Zhang L, Zhou H, Gu D, Tian J, Zhang B, Dong D, Mo X, Liu J, Luo X, Pei S, Dong Y, Huang W, Chen Q, Liang C, Lian Z, Zhang S (2019) Radiomic nomogram: pretreatment evaluation of local recurrence in nasopharyngeal carcinoma based on MR imaging. J Cancer 10:4217–4225

    Article  PubMed Central  PubMed  Google Scholar 

  50. Hatt M, Vallieres M, Visvikis D, Zwanenburg A (2018) IBSI: an international community radiomics standardization initiative. J Nucl Med 59:287

    Google Scholar 

  51. Papp L, Rausch I, Grahovac M, Hacker M, Beyer TJJNM (2019) Optimized feature extraction for radiomics analysis of 18F-FDG. PET Imaging 60:864–872

    Google Scholar 

  52. Whybra P, Parkinson C, Foley K, Staffurth J, Spezi E (2019) Assessing radiomic feature robustness to interpolation in 18F-FDG PET imaging. Sci Rep 9:9649

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Lu L, Lv W, Jiang J, Ma J, Feng Q, Rahmim A, Chen W (2016) Robustness of radiomic features in [11C]choline and [18F]FDG PET/CT imaging of nasopharyngeal carcinoma: impact of segmentation and discretization. Mol Imaging Biol 18:935–945

    Article  CAS  PubMed  Google Scholar 

  54. Su C, Jiang J, Zhang S, Shi J, Xu K, Shen N, Zhang J, Li L, Zhao L, Zhang J, Qin Y, Liu Y, Zhu W (2019) Radiomics based on multicontrast MRI can precisely differentiate among glioma subtypes and predict tumour-proliferative behaviour. Eur Radiol 29:1986–1996

    Article  PubMed  Google Scholar 

  55. Shafiq-ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, Abdalah MA, Schabath MB, Goldgof DG, Mackin D, Court LE, Gillies RJ, Moros EG (2017) Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys 44:1050–1062

    Article  CAS  PubMed  Google Scholar 

  56. Huang SY, Franc BL, Harnish RJ, Liu G, Mitra D, Copeland TP, Arasu VA, Kornak J, Jones EF, Behr SC, Hylton NM, Price ER, Esserman L, Seo Y (2018) Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis. NPJ Breast Cancer 4:24

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Caineng Cao and Xiaozhong Chen, Zhejiang Cancer Hospital and Yuanfan Xu, Hangzhou Universal Medical Imagine Diagnostion for generously providing the PET/MR dataset.

Funding

This work was supported by National Key R&D Program of China (2018YFE0114800), Natural Science Foundation of China (NSFC Grant Nos. 81871351, 81827804, 81950410632), and Zhejiang Provincial Natural Science Foundation of China (Grant No. LY17E050008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Rong or Tianye Niu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Xu, L., Cao, Z. et al. Extracting and Selecting Robust Radiomic Features from PET/MR Images in Nasopharyngeal Carcinoma. Mol Imaging Biol 22, 1581–1591 (2020). https://doi.org/10.1007/s11307-020-01507-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-020-01507-7

Key words

Navigation