Skip to main content
Log in

MetaRNAseq analysis of surti buffalo rumen content reveals that transcriptionally active microorganisms need not be abundant

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The present study describes rumen microbiota composition and their functional profiles in Indian Surti buffaloes by metagenomic (MG) and metatranscriptomic (MT) approaches. The study compares samples from buffaloes fed three different proportion of roughages; green and dry type of roughage; and different rumen liquor fractions. Irrespective of sample, Bacteroidetes and Firmicutes were the most predominant bacterial phyla, followed by Proteobacteria, Fibrobacteres and Actinobacteria while, Prevotella, Bacteroides, Ruminococcus and Clostridium were the most abundant genera. Different proportions of taxa were observed in both MG and MT approaches indicating the differences in organisms present and organisms active in the rumen. Higher proportions of fungal taxa were observed in MT while important organisms like Fibrobacter and Butyrivibrio and abundant organisms like Bacteroides and Prevotella were underrepresented in MT data. Functionally, higher proportions of genes involved in Carbohydrate metabolism, Amino acid metabolism and Translation were observed in both data. Genes involved in Metabolism were observed to be underrepresented in MT data while, those involved in Genetic information processing were overrepresented in MT data. Further, genes involved in Carbohydrate metabolism were overexpressed compared to genes involved in Amino acid metabolism in MT data compared to MG data which had higher proportion of genes involved in Amino acid metabolism than Carbohydrate metabolism. In all significant differences were observed between both approaches, different fractions of rumen liquor (liquid and solid) and different proportions of roughage in diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Sequencing data is submitted in Sequence Read Archive at NCBI and can be accessed as a part of BioProject PRJNA603439 with SRA accession numbers SRR10987805-SRR10987900.

References

  1. Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissat B, Nelson KE, White BA (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci U S A 106(6):1948–1953. https://doi.org/10.1073/pnas.0806191105

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467. https://doi.org/10.1126/science.1200387

    Article  CAS  PubMed  Google Scholar 

  3. Singh KM, Reddy B, Patel D, Patel AK, Parmar N, Patel A, Patel JB, Joshi CG (2014) High potential source for biomass degradation enzyme discovery and environmental aspects revealed through metagenomics of Indian buffalo rumen. Biomed Res Int 2014:267189. https://doi.org/10.1155/2014/267189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jami E, Mizrahi I (2012) Composition and similarity of bovine rumen microbiota across individual animals. PLoS ONE 7(3):e33306. https://doi.org/10.1371/journal.pone.0033306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li LL, McCorkle SR, Monchy S, Taghavi S, van der Lelie D (2009) Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnol Biofuels 2:10. https://doi.org/10.1186/1754-6834-2-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Parmar NR, Solanki JV, Patel AB, Shah TM, Patel AK, Parnerkar S, Kumar JI, Joshi CG (2014) Metagenome of Mehsani buffalo rumen microbiota: an assessment of variation in feed-dependent phylogenetic and functional classification. J Mol Microbiol Biotechnol 24(4):249–261. https://doi.org/10.1159/000365054

    Article  CAS  PubMed  Google Scholar 

  7. Yang WZ, Beauchemin KA, Rode LM (1999) Effects of an enzyme feed additive on extent of digestion and milk production of lactating dairy cows. J Dairy Sci 82(2):391–403. https://doi.org/10.3168/jds.S0022-0302(99)75245-8

    Article  CAS  PubMed  Google Scholar 

  8. Thoetkiattikul H, Mhuantong W, Laothanachareon T, Tangphatsornruang S, Pattarajinda V, Eurwilaichitr L, Champreda V (2013) Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing. Curr Microbiol 67(2):130–137. https://doi.org/10.1007/s00284-013-0336-3

    Article  CAS  PubMed  Google Scholar 

  9. Pitta DW, Parmar N, Patel AK, Indugu N, Kumar S, Prajapathi KB, Patel AB, Reddy B, Joshi C (2014) Bacterial diversity dynamics associated with different diets and different primer pairs in the rumen of Kankrej cattle. PLoS ONE 9(11):e111710. https://doi.org/10.1371/journal.pone.0111710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patel V, Patel AK, Parmar NR, Patel AB, Reddy B, Joshi CG (2014) Characterization of the rumen microbiome of Indian Kankrej cattle (Bos indicus) adapted to different forage diet. Appl Microbiol Biotechnol 98(23):9749–9761. https://doi.org/10.1007/s00253-014-6153-1

    Article  CAS  PubMed  Google Scholar 

  11. Pandit RJ, Hinsu AT, Patel SH, Jakhesara SJ, Koringa PG, Bruno F, Psifidi A, Shah SV, Joshi CG (2018) Microbiota composition, gene pool and its expression in Gir cattle (Bos indicus) rumen under different forage diets using metagenomic and metatranscriptomic approaches. Syst Appl Microbiol 41(4):374–385. https://doi.org/10.1016/j.syapm.2018.02.002

    Article  PubMed  Google Scholar 

  12. Molist F, Manzanilla EG, Perez JF, Nyachoti CM (2012) Coarse, but not finely ground, dietary fibre increases intestinal Firmicutes: Bacteroidetes ratio and reduces diarrhoea induced by experimental infection in piglets. Br J Nutr 108(1):9–15. https://doi.org/10.1017/S0007114511005216

    Article  CAS  PubMed  Google Scholar 

  13. Fernando SC, Purvis HT 2nd, Najar FZ, Sukharnikov LO, Krehbiel CR, Nagaraja TG, Roe BA, Desilva U (2010) Rumen microbial population dynamics during adaptation to a high-grain diet. Appl Environ Microbiol 76(22):7482–7490. https://doi.org/10.1128/AEM.00388-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Menezes AB, Lewis E, O'Donovan M, O'Neill BF, Clipson N, Doyle EM (2011) Microbiome analysis of dairy cows fed pasture or total mixed ration diets. FEMS Microbiol Ecol 78(2):256–265. https://doi.org/10.1111/j.1574-6941.2011.01151.x

    Article  CAS  PubMed  Google Scholar 

  15. Bryant MP (1970) Normal flora–rumen bacteria. Am J Clin Nutr 23(11):1440–1450

    Article  CAS  PubMed  Google Scholar 

  16. Michelizzi VN, Dodson MV, Pan Z, Amaral ME, Michal JJ, McLean DJ, Womack JE, Jiang Z (2010) Water buffalo genome science comes of age. Int J Biol Sci 6(4):333–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang J, Fu Z, Feng X, Shi Y, Yuan C, Liu J, Hong Y, Li H, Lu K, Lin J (2012) Comparison of worm development and host immune responses in natural hosts of Schistosoma japonicum, yellow cattle and water buffalo. BMC Vet Res 8:25. https://doi.org/10.1186/1746-6148-8-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Franzolin R, St-Pierre B, Northwood K, Wright AD (2012) Analysis of rumen methanogen diversity in water buffaloes (Bubalus bubalis) under three different diets. Microbiol Ecol 64(1):131–139. https://doi.org/10.1007/s00248-012-0007-0

    Article  CAS  Google Scholar 

  19. Singh KM, Ahir VB, Tripathi AK, Ramani UV, Sajnani M, Koringa PG, Jakhesara S, Pandya PR, Rank DN, Murty DS, Kothari RK, Joshi CG (2012) Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: a preliminary study. Mol Biol Rep 39(4):4841–4848. https://doi.org/10.1007/s11033-011-1278-0

    Article  CAS  PubMed  Google Scholar 

  20. Pandya PR, Singh KM, Parnerkar S, Tripathi AK, Mehta HH, Rank DN, Kothari RK, Joshi CG (2010) Bacterial diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16S rDNA analysis. J Appl Genet 51(3):395–402. https://doi.org/10.1007/BF03208869

    Article  CAS  PubMed  Google Scholar 

  21. Hinsu AT, Parmar NR, Nathani NM, Pandit RJ, Patel AB, Patel AK, Joshi CG (2017) Functional gene profiling through metaRNAseq approach reveals diet-dependent variation in rumen microbiota of buffalo (Bubalus bubalis). Anaerobe 44:106–116. https://doi.org/10.1016/j.anaerobe.2017.02.021

    Article  CAS  PubMed  Google Scholar 

  22. Nathani NM, Patel AK, Mootapally CS, Reddy B, Shah SV, Lunagaria PM, Kothari RK, Joshi CG (2015) Effect of roughage on rumen microbiota composition in the efficient feed converter and sturdy Indian Jaffrabadi buffalo (Bubalus bubalis). BMC Genomics 16:1116. https://doi.org/10.1186/s12864-015-2340-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386. https://doi.org/10.1186/1471-2105-9-386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. https://doi.org/10.1093/nar/gkl842

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21):3123–3124. https://doi.org/10.1093/bioinformatics/btu494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hadley W (2009) ggplot2 - Elegant Graphics for Data Analysis. Springer-Verlag, New York

    Google Scholar 

  29. Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P, O'Hara R, Simpson G, Solymos P, Stevens M, Szoecs E, Wagner H (2019) vegan: Community Ecology Package. R package version 2.5–6.

  30. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4):e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bremges A, Maus I, Belmann P, Eikmeyer F, Winkler A, Albersmeier A, Puhler A, Schluter A, Sczyrba A (2015) Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant. Gigascience 4:33. https://doi.org/10.1186/s13742-015-0073-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J, Earl AM, Giannoukos G, Boylan MR, Ciulla D, Gevers D, Izard J, Garrett WS, Chan AT, Huttenhower C (2014) Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci U S A 111(22):E2329–2338. https://doi.org/10.1073/pnas.1319284111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gullert S, Fischer MA, Turaev D, Noebauer B, Ilmberger N, Wemheuer B, Alawi M, Rattei T, Daniel R, Schmitz RA, Grundhoff A, Streit WR (2016) Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies. Biotechnol Biofuels 9:121. https://doi.org/10.1186/s13068-016-0534-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hassa J, Maus I, Off S, Puhler A, Scherer P, Klocke M, Schluter A (2018) Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol 102(12):5045–5063. https://doi.org/10.1007/s00253-018-8976-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jose VL, More RP, Appoothy T, Arun AS (2017) In depth analysis of rumen microbial and carbohydrate-active enzymes profile in Indian crossbred cattle. Syst Appl Microbiol 40(3):160–170. https://doi.org/10.1016/j.syapm.2017.02.003

    Article  CAS  PubMed  Google Scholar 

  36. Kala A, Kamra DN, Kumar A, Agarwal N, Chaudhary LC, Joshi CG (2017) Impact of levels of total digestible nutrients on microbiome, enzyme profile and degradation of feeds in buffalo rumen. PLoS ONE 12(2):e0172051. https://doi.org/10.1371/journal.pone.0172051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pitta DW, Indugu N, Kumar S, Vecchiarelli B, Sinha R, Baker LD, Bhukya B, Ferguson JD (2016) Metagenomic assessment of the functional potential of the rumen microbiome in Holstein dairy cows. Anaerobe 38:50–60. https://doi.org/10.1016/j.anaerobe.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  38. Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Genome Med 8(1):51. https://doi.org/10.1186/s13073-016-0307-y

    Article  PubMed  PubMed Central  Google Scholar 

  39. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Meta HITC, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65. https://doi.org/10.1038/nature08821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Human Microbiome Project C (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214. https://doi.org/10.1038/nature11234

    Article  CAS  Google Scholar 

  41. Bainbridge ML, Cersosimo LM, Wright AD, Kraft J (2016) Rumen bacterial communities shift across a lactation in Holstein, Jersey and Holstein x Jersey dairy cows and correlate to rumen function, bacterial fatty acid composition and production parameters. FEMS Microbiol Ecol 92(5):fiw059. https://doi.org/10.1093/femsec/fiw059

    Article  CAS  PubMed  Google Scholar 

  42. Koike S, Yoshitani S, Kobayashi Y, Tanaka K (2003) Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol Lett 229(1):23–30

    Article  CAS  PubMed  Google Scholar 

  43. Diaz Carrasco JM, Cabral C, Redondo LM, Pin Viso ND, Colombatto D, Farber MD, Fernandez Miyakawa ME (2017) Impact of Chestnut and Quebracho Tannins on Rumen Microbiota of Bovines. Biomed Res Int 2017:9610810. https://doi.org/10.1155/2017/9610810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huws SA, Edwards JE, Creevey CJ, Rees Stevens P, Lin W, Girdwood SE, Pachebat JA, Kingston-Smith AH (2016) Temporal dynamics of the metabolically active rumen bacteria colonizing fresh perennial ryegrass. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiv137

    Article  PubMed  Google Scholar 

  45. Qian W, Li Z, Ao W, Zhao G, Wu J, Li G (2017) Bacterial community composition and fermentation in the rumen of Xinjiang brown cattle (Bos taurus), Tarim red deer (Cervus elaphus yarkandensis), and Karakul sheep (Ovis aries). Can J Microbiol 63(5):375–383. https://doi.org/10.1139/cjm-2016-0596

    Article  CAS  PubMed  Google Scholar 

  46. Ventorino V, Aliberti A, Faraco V, Robertiello A, Giacobbe S, Ercolini D, Amore A, Fagnano M, Pepe O (2015) Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application. Sci Rep 5:8161. https://doi.org/10.1038/srep08161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim M, Morrison M, Yu Z (2011) Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 76(1):49–63. https://doi.org/10.1111/j.1574-6941.2010.01029.x

    Article  CAS  PubMed  Google Scholar 

  48. Ransom-Jones E, Jones DL, McCarthy AJ, McDonald JE (2012) The Fibrobacteres: an important phylum of cellulose-degrading bacteria. Microb Ecol 63(2):267–281. https://doi.org/10.1007/s00248-011-9998-1

    Article  CAS  PubMed  Google Scholar 

  49. Ze X, Le Mougen F, Duncan SH, Louis P, Flint HJ (2013) Some are more equal than others: the role of "keystone" species in the degradation of recalcitrant substrates. Gut Microbes 4(3):236–240. https://doi.org/10.4161/gmic.23998

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shanks OC, Kelty CA, Archibeque S, Jenkins M, Newton RJ, McLellan SL, Huse SM, Sogin ML (2011) Community structures of fecal bacteria in cattle from different animal feeding operations. Appl Environ Microbiol 77(9):2992–3001. https://doi.org/10.1128/AEM.02988-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the staff at Livestock Research Station, Navsari Agricultural University for their help and support in maintenance of animals and sample collection.

Funding

This study was funded by the Indian Council of Agricultural Research (ICAR), New Delhi, India under the Niche area of Excellence program entitled “Metagenomic Analysis of Ruminal Microbes” [10/(2)/2011-ecd date 21/10/2011 (AAU#203020)]. The funding agency had no role in sample collection, conducting experiment, data analysis and manuscript writing.

Author information

Authors and Affiliations

Authors

Contributions

ATH and RKS were involved in sample collection. ATH, ABP, RJP and JRT were involved in processing of samples, extraction of nucleic acids and its sequencing. ATH and RJP did the data analysis and manuscript writing with inputs from CGJ. SJJ, PGK and CGJ conceptualised the study, acquired the funding and corrected the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chaitanya G. Joshi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interests.

Ethics approval

Present study was conducted with the prior approval of the Institutional Animal Ethics Committee (IAEC) of Veterinary College, Anand Agricultural University (No. AAU/GVC/CPCSEA-IAEC/108/2013 dated 05/10/2013). All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Consent to participate

The animals used in the study are part of Livestock Research Station of Navsari Agricultural University and hence, no consent needs to be taken from owner.

Consent for publication

Not applicable because of institution owned animals.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinsu, A.T., Patel, A.B., Pandit, R.J. et al. MetaRNAseq analysis of surti buffalo rumen content reveals that transcriptionally active microorganisms need not be abundant. Mol Biol Rep 47, 5101–5114 (2020). https://doi.org/10.1007/s11033-020-05581-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05581-6

Keywords

Navigation