Skip to main content
Log in

Anti-inflammatory Activity of Bioactive Compounds from Microalgae and Cyanobacteria by Focusing on the Mechanisms of Action

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Microalgae and cyanobacteria are the potentially valuable source of bioactive compounds applied in the various industries and human usage in different fields of pharmaceutical, nutraceutical, and cosmetic disciplines. One of the interesting aspects is their application as the anti-inflammatory agents for treatment of inflammation related mal-conditions. Natural compounds are of great importance in the treatment of inflammations to reduce the reaction of immune system against pathogens, toxic compounds and damaged cells. A wide range of different metabolites with various chemical structures, including small molecules and peptides and proteins, polysaccharides, fatty acids and their derivatives have been found in microalgae and cyanobacteria which have anti-inflammatory activity. In this review, we summarized different metabolites with anti-inflammatory activity that were extracted from these microorganisms and their mechanisms. The bioactive compounds from microalgae and cyanobacteria have exhibited anti-inflammatory activity through different mechanisms acting intra- or extra- cellularly. So, they could be considered as promising anti-inflammatory agents in treatment of related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bule MH, Ahmed I, Maqbool F, Bilal M, Iqbal HM (2018) Microalgae as a source of high-value bioactive compounds. Front Biosci (Sch Ed) 10:197–216

    Google Scholar 

  2. Sathasivam R, Radhakrishnan R, Hashem A, Abd-Allah EF (2017) Microalgae metabolites: A rich source for food and medicine. Saudi J Biol Sci 26(4):709–722

    PubMed  PubMed Central  Google Scholar 

  3. Martínez-Francés E, Escudero-Oñate C (2018) Cyanobacteria and microalgae in the production of valuable bioactive compounds. Microalgal Biotechnol. https://doi.org/10.5772/intechopen.74043

    Article  Google Scholar 

  4. de Morais MG, Vaz BdS, de Morais EG, Costa JAV (2015) Biologically active metabolites synthesized by microalgae. BioMed Res Int. https://doi.org/10.1155/2015/835761

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sigamani S, Ramamurthy D, Natarajan H (2016) A review on potential biotechnological applications of microalgae. J Appl Pharm Sci 6(8):179–184. https://doi.org/10.7324/JAPS.2016.60829

    Article  CAS  Google Scholar 

  6. Lauritano C, Andersen JH, Hansen E, Albrigtsen M, Escalera L, Esposito F, Helland K, Hanssen KØ, Romano G, Ianora A (2016) Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front Mar Sci 3:68

    Google Scholar 

  7. Guzman S, Gato A, Lamela M, Freire-Garabal M, Calleja J (2003) Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res 17(6):665–670

    CAS  PubMed  Google Scholar 

  8. Soontornchaiboon W, Joo SS, Kim SM (2012) Anti-inflammatory effects of violaxanthin isolated from microalga Chlorella ellipsoidea in RAW 264.7 macrophages. Biol Pharm Bull 35(7):1137–1144

    CAS  PubMed  Google Scholar 

  9. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6):7204

    Google Scholar 

  10. Fernando IS, Nah J-W, Jeon Y-J (2016) Potential anti-inflammatory natural products from marine algae. Environ Toxicol Pharmacol 48:22–30

    CAS  PubMed  Google Scholar 

  11. Urtubia HO, Betanzo LB, Vásquez M (2016) Microalgae and cyanobacteria as green molecular factories: tools and perspectives. Algae: Organisms Imminent Biotechnol. https://doi.org/10.5772/63006

    Article  Google Scholar 

  12. Singh S, Kate BN, Banerjee U (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25(3):73–95

    CAS  PubMed  Google Scholar 

  13. Skulberg OM (2000) Microalgae as a source of bioactive molecules–experience from cyanophyte research. J Appl Phycol 12(3–5):341–348

    CAS  Google Scholar 

  14. Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 17(1):36

    PubMed  PubMed Central  Google Scholar 

  15. Cardozo KH, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C 146(1–2):60–78

    Google Scholar 

  16. Villa FA, Gerwick L (2010) Marine natural product drug discovery: Leads for treatment of inflammation, cancer, infections, and neurological disorders. Immunopharmacol Immunotoxicol 32(2):228–237

    CAS  PubMed  Google Scholar 

  17. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee D-J, Chang J-S (2017) Microalgae biorefinery: high value products perspectives. Biores Technol 229:53–62

    CAS  Google Scholar 

  18. Vane J, Botting R (1987) Inflammation and the mechanism of action of anti-inflammatory drugs. FASEB J 1(2):89–96

    CAS  PubMed  Google Scholar 

  19. Yoshimoto S, Okada K, Hayashi O (2019) Immuno-regulatory and anti-inflammatory actions of phycocyanin on Caco-2/U937 cells co-culture as a model of the intestinal barrier. Funct Foods Health Dis 9(7):466–483

    CAS  Google Scholar 

  20. Hao S, Yan Y, Huang W, Gai F, Wang J, Liu L, Wang C (2018) C-phycocyanin reduces inflammation by inhibiting NF-κB activity through downregulating PDCD5 in lipopolysaccharide-induced RAW 264.7 macrophages. J Funct Foods 42:21–29

    CAS  Google Scholar 

  21. Yeh P-T, Huang H-W, Yang C-M, Yang W-S, Yang C-H (2016) Astaxanthin inhibits expression of retinal oxidative stress and inflammatory mediators in streptozotocin-induced diabetic rats. PLoS ONE 11(1):e0146438

    PubMed  PubMed Central  Google Scholar 

  22. Su J, Guo K, Zhang J, Huang M, Sun L, Li D, Pang K-L, Wang G, Chen L, Liu Z (2019) Fucoxanthin, a marine xanthophyll isolated from Conticribra weissflogii ND-8: preventive anti-inflammatory effect in a mouse model of sepsis. Front Pharmacol 10:906

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ohno O, Terasaki T, Sano T, Hitomi Y, Miyamoto J, Matsuno K (2020) Inhibitory effects of biseokeaniamide A against lipopolysaccharide-induced signal transduction. Bioorganic Med Chem Lett 30(11):127069

    CAS  Google Scholar 

  24. Sugiura Y, Kinoshita Y, Usui M, Tanaka R, Matsushita T, Miyata M (2016) The suppressive effect of a marine carotenoid, fucoxanthin, on mouse ear swelling through regulation of activities and mRNA expression of inflammation-associated enzymes. Food Sci Technol Res 22(2):227–234

    CAS  Google Scholar 

  25. Tarasuntisuk S, Palaga T, Kageyama H, Waditee-Sirisattha R (2019) Mycosporine-2-glycine exerts anti-inflammatory and antioxidant effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Arch Biochem Biophys 662:33–39

    CAS  PubMed  Google Scholar 

  26. Li M-Y, Sun L, Niu X-T, Chen X-M, Tian J-X, Kong Y-D, Wang G-Q (2019) Astaxanthin protects lipopolysaccharide-induced inflammatory response in Channa argus through inhibiting NF-κB and MAPKs signaling pathways. Fish Shellfish Immunol 86:280–286

    CAS  PubMed  Google Scholar 

  27. AlQranei MS, Aljohani H, Majumdar S, Senbanjo LT, Chellaiah MA (2020) c-phycocyanin attenuates RAnKL-induced osteoclastogenesis and bone resorption in vitro through inhibiting ROS levels, NFATc1 and nf-κB activation. Sci Rep 10(1):1–13

    Google Scholar 

  28. Kapuścik A, Hrouzek P, Kuzma M, Bártová S, Novák P, Jokela J, Pflüger M, Eger A, Hundsberger H, Kopecký J (2013) Novel aeruginosin-865 from Nostoc sp. as a potent anti-inflammatory agent. ChemBioChem 14(17):2329–2337. https://doi.org/10.1002/cbic.201300246

    Article  CAS  PubMed  Google Scholar 

  29. Faltermann S, Hutter S, Christen V, Hettich T, Fent K (2016) Anti-inflammatory activity of cyanobacterial serine protease inhibitors aeruginosin 828A and cyanopeptolin 1020 in human hepatoma cell line Huh7 and effects in Zebrafish (Danio rerio). Toxins 8(7):219

    PubMed Central  Google Scholar 

  30. Suh S-S, Hwang J, Park M, Seo H, Kim H-S, Lee J, Moh S, Lee T-K (2014) Anti-inflammation activities of mycosporine-like amino acids (MAAs) in response to UV radiation suggest potential anti-skin aging activity. Mar Drugs 12(10):5174–5187

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Torres A, Enk CD, Hochberg M, Srebnik M (2006) Porphyra-334, a potential natural source for UVA protective sunscreens. Photochem Photobiol Sci 5(4):432–435

    CAS  PubMed  Google Scholar 

  32. Singh SP, Klisch M, Sinha RP, Häder DP (2008) Effects of abiotic stressors on synthesis of the mycosporine-like amino acid shinorine in the cyanobacterium Anabaena variabilis PCC 7937. Photochem Photobiol 84(6):1500–1505

    CAS  PubMed  Google Scholar 

  33. Izadi M, Fazilati M (2018) Extraction and purification of phycocyanin from spirulina platensis and evaluating its antioxidant and anti-inflammatory activity. Asian J Green Chem 3(08):149–153

    Google Scholar 

  34. Sarada R, Pillai MG, Ravishankar GA (1999) Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem 34(8):795–801

    CAS  Google Scholar 

  35. Engene N, Choi H, Esquenazi E, Byrum T, Villa FA, Cao Z, Murray TF, Dorrestein PC, Gerwick L, Gerwick WH (2011) Phylogeny-guided isolation of ethyl tumonoate A from the marine cyanobacterium cf. Oscillatoria margaritifera. J Nat Prod 74(8):1737–1743

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Vo TS, Ryu B, Kim SK (2013) Purification of novel anti-inflammatory peptides from enzymatic hydrolysate of the edible microalgal Spirulina maxima. Journal of Functional Foods 5(3):1336–1346. https://doi.org/10.1016/j.jff.2013.05.001

    Article  CAS  Google Scholar 

  37. Motoyama K, Tanida Y, Hata K, Hayashi T, Hashim IIA, Higashi T, Ishitsuka Y, Kondo Y, Irie T, Kaneko S (2016) Anti-inflammatory effects of novel polysaccharide sacran extracted from cyanobacterium Aphanothece sacrum in various inflammatory animal models. Biol Pharm Bull 39(7):1172–1178

    CAS  PubMed  Google Scholar 

  38. Olafsdottir A, Thorlacius GE, Omarsdottir S, Olafsdottir ES, Vikingsson A, Freysdottir J, Hardardottir I (2014) A heteroglycan from the cyanobacterium Nostoc commune modulates LPS-induced inflammatory cytokine secretion by THP-1 monocytes through phosphorylation of ERK1/2 and Akt. Phytomedicine 21(11):1451–1457. https://doi.org/10.1016/j.phymed.2014.04.023

    Article  CAS  PubMed  Google Scholar 

  39. Jensen S, Petersen B, Omarsdottir S, Paulsen B, Duus JØ, Olafsdottir E (2013) Structural characterisation of a complex heteroglycan from the cyanobacterium Nostoc commune. Carbohyd Polym 91(1):370–376

    CAS  Google Scholar 

  40. Bruno A, Rossi C, Marcolongo G, Di Lena A, Venzo A, Berrie CP, Corda D (2005) Selective in vivo anti-inflammatory action of the galactolipid monogalactosyldiacylglycerol. Eur J Pharmacol 524(1–3):159–168

    CAS  PubMed  Google Scholar 

  41. Ávila-Román J, Talero E, de los Reyes C, García-Mauriño S, Motilva V (2018) Microalgae-derived oxylipins decrease inflammatory mediators by regulating the subcellular location of NFκB and PPAR-γ. Pharmacol Res 128:220–230

    PubMed  Google Scholar 

  42. Priyadarshini L, Aggarwal A (2018) Astaxanthin inhibits cytokines production and inflammatory gene expression by suppressing IκB kinase-dependent nuclear factor κB activation in pre and postpartum Murrah buffaloes during different seasons. Veterinary world 11(6):782

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang Y-P, Tong Q-Y, Zheng S-H, Zhou M-D, Zeng Y-M, Zhou T-T (2019) Anti-inflammatory effect of fucoxanthin on dextran sulfate sodium-induced colitis in mice. Natl Product Res. https://doi.org/10.1080/14786419.2018.1528593

    Article  Google Scholar 

  44. Balunas MJ, Grosso MF, Villa FA, Engene N, McPhail KL, Tidgewell K, Pineda LM, Gerwick L, Spadafora C, Kyle DE (2012) Coibacins A-D, antileishmanial marine cyanobacterial polyketides with intriguing biosynthetic origins. Org Lett 14(15):3878–3881

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Choi H, Mascuch SJ, Villa FA, Byrum T, Teasdale ME, Smith JE, Preskitt LB, Rowley DC, Gerwick L, Gerwick WH (2012) Honaucins A− C, potent inhibitors of inflammation and bacterial quorum sensing: synthetic derivatives and structure-activity relationships. Chem Biol 19(5):589–598

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Carreto JI, Carignan MO (2011) Mycosporine-like amino acids: relevant secondary metabolites. Chem Ecol Aspects Mar drugs 9(3):387–446

    CAS  Google Scholar 

  47. Shih MF, Chen LC, Cherng JY (2013) Chlorella 11-peptide inhibits the production of macrophage-induced adhesion molecules and reduces endothelin-1 expression and endothelial permeability. Mar Drugs 11(10):3861–3874

    PubMed  PubMed Central  Google Scholar 

  48. Cherng J, Liu C, Shen C, Lin H, Shih M (2010) Beneficial effects of Chlorella-11 peptide on blocking LPS-induced macrophage activation and alleviating thermal injury-induced inflammation in rats. Int J Immunopathol Pharmacol 23(3):811–820

    CAS  PubMed  Google Scholar 

  49. Zhang R, Chen J, Mao X, Qi P, Zhang X (2019) Anti-inflammatory and anti-aging evaluation of pigment-protein complex extracted from Chlorella Pyrenoidosa. Mar Drugs 17(10):586

    CAS  PubMed Central  Google Scholar 

  50. Salvador LA, Taori K, Biggs JS, Jakoncic J, Ostrov DA, Paul VJ, Luesch H (2013) Potent elastase inhibitors from cyanobacteria: structural basis and mechanisms mediating cytoprotective and anti-inflammatory effects in bronchial epithelial cells. J Med Chem 56(3):1276–1290

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gharib R, Tabarzad M, Hosseinabadi T (2020) Effect of high salinity on mycosporine-like amino acid production in Desmodesmus sp. Trends Peptide Protein Sci 5:1–6

    Google Scholar 

  52. Patel A, Mishra S, Pawar R, Ghosh P (2005) Purification and characterization of C-Phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expr Purif 40(2):248–255

    CAS  PubMed  Google Scholar 

  53. Schirmer T, Bode W, Huber R (1987) Refined three-dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 Å resolution: a common principle of phycobilin-protein interaction. J Mol Biol 196(3):677–695

    CAS  PubMed  Google Scholar 

  54. Piron R, Bustamante T, Barriga A, Lagos N (2019) Phycobilisome isolation and C-phycocyanin purification from the cyanobacterium Aphanizomenon gracile. Photosynthetica 57(2):491–499

    CAS  Google Scholar 

  55. Patel HM, Rastogi RP, Trivedi U, Madamwar D (2018) Structural characterization and antioxidant potential of phycocyanin from the cyanobacterium Geitlerinema sp. H8DM. Algal Res 32:372–383

    Google Scholar 

  56. Sloth JK, Jensen HC, Pleissner D, Eriksen NT (2017) Growth and phycocyanin synthesis in the heterotrophic microalga Galdieria sulphuraria on substrates made of food waste from restaurants and bakeries. Biores Technol 238:296–305

    CAS  Google Scholar 

  57. de Morais MG, da Fontoura PD, Moreira JB, Duarte JH, Costa JAV (2018) Phycocyanin from microalgae: properties, extraction and purification, with some recent applications. Ind Biotechnol 14(1):30–37

    Google Scholar 

  58. Liu Q, Li W, Lu L, Liu B, Du Z, Qin S (2019) Phycocyanin attenuates X-ray-induced pulmonary infl ammation via the TLR2-MyD88-NF-κB signaling pathway. J Oceanol Limnol 12(11):12591–12599

    Google Scholar 

  59. Nemoto-Kawamura C, Hirahashi T, Nagai T, Yamada H, Katoh T, Hayashi O (2004) Phycocyanin enhances secretary IgA antibody response and suppresses allergic IgE antibody response in mice immunized with antigen-entrapped biodegradable microparticles. J Nutr Sci Vitaminol 50(2):129–136

    PubMed  Google Scholar 

  60. Romay C, Ledon N, Gonzalez R (2000) Effects of phycocyanin extract on prostaglandin E2 levels in mouse ear inflammation test. Arzneimittel-Forschung/Drug Res 50(12):1106–1109

    CAS  Google Scholar 

  61. Remirez D, Ledón N, González R (2002) Role of histamine in the inhibitory effects of phycocyanin in experimental models of allergic inflammatory response. Mediators Inflamm 11(2):81–85. https://doi.org/10.1080/09629350220131926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Romay C, Gonzalez R, Ledon N, Remirez D, Rimbau V (2003) C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 4(3):207–216

    CAS  PubMed  Google Scholar 

  63. Cervantes-Llanos M, Lagumersindez-Denis N, Marín-Prida J, Pavón-Fuentes N, Falcon-Cama V, Piniella-Matamoros B, Camacho-Rodríguez H, Fernández-Massó JR, Valenzuela-Silva C, Raíces-Cruz I, Pentón-Arias E, Teixeira MM, Pentón-Rol G (2018) Beneficial effects of oral administration of C-Phycocyanin and Phycocyanobilin in rodent models of experimental autoimmune encephalomyelitis. Life Sci 194:130–138. https://doi.org/10.1016/j.lfs.2017.12.032

    Article  CAS  PubMed  Google Scholar 

  64. Zheng J, Inoguchi T, Sasaki S, Maeda Y, McCarty M, Fujii M, Ikeda N, Kobayashi K, Sonoda N, Takayanagi R (2012) Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Am J Physiol-Heart Circulat Physiol. https://doi.org/10.1152/ajpregu.00648.2011

    Article  Google Scholar 

  65. Matsui MS, Muizzuddin N, Arad S, Marenus K (2003) Sulfated polysaccharides from red microalgae have antiinflammatory properties in vitro and in vivo. Appl Biochem Biotechnol 104(1):13–22

    CAS  PubMed  Google Scholar 

  66. Dai B, Wei D, Zheng NN, Chi ZH, Xin N, Ma TX, Zheng LY, Sumi R, Sun L (2019) Coccomyxa gloeobotrydiformis polysaccharide inhibits lipopolysaccharide-induced inflammation in RAW 2647 macrophages. Cell Physiol Biochem 51(6):2523–2535. https://doi.org/10.1159/000495922

    Article  CAS  Google Scholar 

  67. Levy-Ontman O, Huleihel M, Hamias R, Wolak T, Paran E (2017) An anti-inflammatory effect of red microalga polysaccharides in coronary artery endothelial cells. Atherosclerosis 264:11–18. https://doi.org/10.1016/j.atherosclerosis.2017.07.017

    Article  CAS  PubMed  Google Scholar 

  68. Gudmundsdottir AB, Brynjolfsdottir A, Olafsdottir ES, Hardardottir I, Freysdottir J (2019) Exopolysaccharides from Cyanobacterium aponinum induce a regulatory dendritic cell phenotype and inhibit SYK and CLEC7A expression in dendritic cells, T cells and keratinocytes. Int Immunopharmacol 69:328–336. https://doi.org/10.1016/j.intimp.2019.01.044

    Article  CAS  PubMed  Google Scholar 

  69. Han P-p, Yao S-y, Guo R-j, Yan R-r, Wu Y-k, Shen S-g, Jia S-r (2017) Influence of culture conditions on extracellular polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Nostoc flagelliforme. RSC Adv 7(71):45075–45084

    CAS  Google Scholar 

  70. Ngatu NR, Okajima MK, Nangana LS, Vumi-Kiaku S, Kaneko T, Kanbara S, Wumba RD-M, Wembonyama-Okitotsho S (2015) Sacran, a new sulfated glycosaminoglycan-like polysaccharide from river alga Aphanothece sacrum (Suringar) Okada alleviates hemorrhoid syndrome: Case report. Ann Phytomed 4(2):49–51

    CAS  Google Scholar 

  71. Blatti JL, Michaud J, Burkart MD (2013) Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Curr Opin Chem Biol 17(3):496–505. https://doi.org/10.1016/j.cbpa.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  72. Gerwick WH (1994) Structure and biosynthesis of marine algal oxylipins. Biochem Biophys Acta 1211(3):243–255

    CAS  PubMed  Google Scholar 

  73. Ávila-Román J, Talero E, Rodríguez-Luna A, García-Mauriño S, Motilva V (2016) Anti-inflammatory effects of an oxylipin-containing lyophilised biomass from a microalga in a murine recurrent colitis model. Br J Nutr 116(12):2044–2052. https://doi.org/10.1017/S0007114516004189

    Article  CAS  PubMed  Google Scholar 

  74. Malloy KL, Villa FA, Engene N, Matainaho T, Gerwick L, Gerwick WH (2011) Malyngamide 2, an oxidized lipopeptide with nitric oxide inhibiting activity from a Papua New Guinea marine cyanobacterium. J Nat Prod 74(1):95–98. https://doi.org/10.1021/np1005407

    Article  CAS  PubMed  Google Scholar 

  75. Ku CS, Pham TX, Park Y, Kim B, Shin MS, Kang I (1830) Lee J (2013) Edible blue-green algae reduce the production of pro-inflammatory cytokines by inhibiting NF-κB pathway in macrophages and splenocytes. Biochim Biophys Acta (BBA) General Subjects 4:2981–2988. https://doi.org/10.1016/j.bbagen.2013.01.018

    Article  CAS  Google Scholar 

  76. Paniagua-Michel J, Olmos-Soto J, Ruiz MA (2012) Pathways of carotenoid biosynthesis in bacteria and microalgae. In: Barredo J (ed) Microbial carotenoids from bacteria and microalgae. Springer, Berlin, pp 1–12

    Google Scholar 

  77. Novoveská L, Ross ME, Stanley MS, Pradelles R, Wasiolek V, Sassi J-F (2019) Microalgal carotenoids: a review of production, current markets, regulations, and future direction. Mar drugs 17(11):640

    PubMed Central  Google Scholar 

  78. Ishikawa E, Abe H (2004) Lycopene accumulation and cyclic carotenoid deficiency in heterotrophic Chlorella treated with nicotine. J Ind Microbiol Biotechnol 31(12):585–589

    CAS  PubMed  Google Scholar 

  79. Renju G, Muraleedhara Kurup G, Saritha Kumari C (2013) Anti-inflammatory activity of lycopene isolated from Chlorella marina on Type II Collagen induced arthritis in Sprague Dawley rats. Immunopharmacol Immunotoxicol 35(2):282–291

    CAS  PubMed  Google Scholar 

  80. Yang YP, Tong QY, Zheng SH, Zhou MD, Zeng YM, Zhou TT (2018) Anti-inflammatory effect of fucoxanthin on dextran sulfate sodium-induced colitis in mice. Nat Prod Res. https://doi.org/10.1080/14786419.2018.1528593

    Article  PubMed  Google Scholar 

  81. Feng G, Dong S, Huang M, Zeng M, Liu Z, Zhao Y, Wu H (2018) Biogenic polyphosphate nanoparticles from a marine Cyanobacterium Synechococcus sp. PCC 7002: production, characterization, and anti-inflammatory properties in vitro. Mar Drugs. https://doi.org/10.3390/md16090322

    Article  PubMed  PubMed Central  Google Scholar 

  82. Balunas MJ, Grosso MF, Villa FA, Engene N, McPhail KL, Tidgewell K, Pineda LM, Gerwick L, Spadafora C, Kyle DE, Gerwick WH (2012) Coibacins A-D, antileishmanial marine cyanobacterial polyketides with intriguing biosynthetic origins. Org Lett 14(15):3878–3881. https://doi.org/10.1021/ol301607q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fukushima S, Motoyama K, Tanida Y, Higashi T, Ishitsuka Y, Kondo Y, Irie T, Tanaka T, Ihn H, Arima H (2016) Clinical evaluation of novel natural polysaccharides sacran as a skincare material for atopic dermatitis patients. J Cosmet Dermatol Sci Appl 6(01):9

    CAS  Google Scholar 

Download references

Funding

No funding sources.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed in data gathering and manuscript writing. All authors read and approved the final version of submitted manuscript.

Corresponding author

Correspondence to Tahereh Hosseinabadi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Informed consent

Not applicable.

Research involving Human Participants and/or Animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabarzad, M., Atabaki, V. & Hosseinabadi, T. Anti-inflammatory Activity of Bioactive Compounds from Microalgae and Cyanobacteria by Focusing on the Mechanisms of Action. Mol Biol Rep 47, 6193–6205 (2020). https://doi.org/10.1007/s11033-020-05562-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05562-9

Keywords

Navigation