Skip to main content
Log in

Comparative Analysis of the Structure of Three piRNA Clusters in the Drosophila melanogaster Genome

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Here we attempt to reconstruct the sequence of events that led to the formation of three regulatory piRNA clusters, namely, 20A, 38C and flamenco in the Drosophila melanogaster genome. Both the 38C and flamenco clusters include inverted sequences, which potentially form double-stranded RNA hairpins. We present evidence in favor of the well-known hypothesis of piRNA clusters as “transposon traps”. According to this model, the presence of the only copy of the transposon in the genome indicates that its expression is suppressed by an RNA-interference mechanism immediately after the mobile element enters the piRNA cluster. We also discuss high the structural variability of piRNAs in Drosophila clusters and cases of horizontal transmobile elements between related species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kapitonov V.V., Jurka J. 2003. Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc. Natl. Acad. Sci. U. S. A.100, 6569–6574.

    Article  CAS  Google Scholar 

  2. Brennecke J., Aravin A.A., Stark A., Dus M., Kellis M., Sachidanandam R., Hannon G.J. 2007. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila.Cell.128, 1089–1103.

    Article  CAS  Google Scholar 

  3. Saito K., Nishida K.M., Mori T., Kawamura Y., Miyoshi K., Nagami T., Siomi H., Siomi M.C. 2006. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev.20, 2214–2222.

    Article  CAS  Google Scholar 

  4. Guida V., Cernilogar F.M., Filograna A., De Gregorio R., Ishizu H., Siomi M.C., Schotta G., Bellenchi G.C., Andrenacci D. 2016. Production of small noncoding RNAs from the flamenco locus is regulated by the gypsy retrotransposon of Drosophila melanogaster.Genetics. 204 (2), 631–644.

    Article  CAS  Google Scholar 

  5. Goriaux C., Théron E., Brasset E., Vaury C. 2014. History of the discovery of a master locus producing piRNAs: The flamenco/COM locus in Drosophila melanogaster.Front. Genet. 5, 257. https://doi.org/10.3389/fgene.2014.00257

    Article  CAS  PubMed  Google Scholar 

  6. Gilboa E., Mitra S., Goff S., Baltimore D. 1979. A detailed model of reverse transcription and a test of crucial aspects. Cell. 18 (1), 93‒100.

    Article  CAS  Google Scholar 

  7. Luciw P., Leung N. 1992. Mechanisms of retroviral replication. In: The Retroviridae. Ed. Levy J.A. New York: Plenum, pp. 159‒298.

  8. Zanni V., Eymery A., Coiffet M., Zytnicki M., Luyten I., Quesneville H., Vaury C., Jensen S. 2013. Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters. Proc. Natl. Acad. Sci. U. S. A.110 (49), 19842‒19847.

    Article  CAS  Google Scholar 

  9. Kotnova A.P., Karpova N.N., Feoktistova M.A., Lyubomirskaya N.V., Kim A.I., Ilyin Yu.V. 2005. Retrotransposon gtwin: Structural analysis and distribution in Drosophila strains. Russ. J. Genet. 41 (1), 17–22.

    Article  CAS  Google Scholar 

  10. Glukhov I.A., Karpova N.N., Kotnova A.P., Lyubomirskaya N.V., Ilyin Yu.V. 2004. Structural characteristics of the third open reading frame of the retrotransposon gtwin in different strains of Drosophila melanogaster.Dokl. Biochem. Biophys.399, 341–343.

    Article  CAS  Google Scholar 

  11. Kotnova A.P., Feoktistova M.A., Glukhov I.A., Salenko V.B., Lyubomirskaya N.V., Kim A.I., Ilyin Yu.V. 2006. Retrotransposon Gtwin specific for the Drosophila melanogaster subgroup. Dokl. Biochem. Biophys. 409, 233‒235.

    Article  CAS  Google Scholar 

  12. Kotnova A.P., Glukhov I.A., Karpova N.N., Salenko V.B., Lyubomirskaya N.V., Ilyin Yu.V. 2007. Evidence for recent horizontal transfer of gypsy-homologous LTR-retrotransposon gtwin into Drosophila erecta followed by its amplification with multiple aberrations. Gene.396 (1), 39‒45.

    Article  CAS  Google Scholar 

  13. Stefanov Yu.E., Kotnova A.P., Glukhov I.A., Lyubomirskaya N.V., Ilyin Yu.V. 2009. Characteristics of retrotransposition activity of the gtwin retrovirus of the Drosophila melanogaster line G32. Dokl. Biochem. Biophys.424, 42–45.

    Article  CAS  Google Scholar 

  14. Salenko V.B., Kotnova A.P., Glukhov I.A., Stefanov Yu.E., Surkov S.A., Lyubomirskaya N.V., Ilyin Yu.V. 2011. A rare family of gtwin retrotransposon carrying a mutation in the tRNA-primer binding site is amplified in G-32 Drosophila melanogaster strain. Dokl. Biochem. Biophys.436, 16–19.

    Article  CAS  Google Scholar 

  15. Bingham P.M., Kidwell M.G., Rubin G.M. 1982. The molecular basis of P-M hybrid dysgenesis: The role of the P element, a P-strain-specific transposon family. Cell. 29, 995‒1004.

    Article  CAS  Google Scholar 

  16. Engels W.R. 1989. P elements in Drosophila melanogaster. In: Mobile DNA. Eds. Berg D.E., Howe M.M. Washington, DC: American Society for Microbiology, pp. 437‒484.

  17. Finnegan D.J. 1989. The I factor and I-R hybrid dysgenensis in Drosophila melanogaster. In: Mobile DNA. Eds. Berg D.E., Howe M.M. Washington, DC: American Society for Microbiology, pp. 503‒517.

  18. Bucheton A. 1990. I transposable elements and I-R hybrid dysgenensis. Trends Genet. 6, 16‒19.

    Article  CAS  Google Scholar 

  19. Marin L., Lehmann M., Nouaud D., Izaabel H., Anxolabehere D., Ronsseray S. 2000. P-element repression in Drosophila melanogaster by a naturally occurring defective telomeric P copy. Genetics.155 (4), 1841–1854.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stuart J.R., Haley K.J., Swedzinski D., Lockner S., Kocian P.E., Merriman P.J., Simmons M.J. 2002. Telomeric P elements associated with cytotype regulation of the P transposon family in Drosophila melanogaster.Genetics.162, 1641–1654.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shpiz S., Ryazansky S., Olovnikov I, Abramov Yu., Kalmykova A. 2014. Euchromatic transposon insertions trigger production of novel Pi- and endo-siRNAs at the target sites in the Drosophila germline. PLoS Genet. 10 (2), e1004138. https://doi.org/10.1371/journal.pgen.1004138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Olovnikov I., Ryazansky S., Shpiz S., Lavrov S., Abramov Y., Vaury C., Jensen S., Kalmykova A. 2013. De novo piRNA cluster formation in the Drosophila germ line triggered by transgenes containing a transcribed transposon fragment. Nucleic Acids Res.41, 5757–5768.

    Article  CAS  Google Scholar 

  23. Akulenko N., Ryazansky S., Morgunova V., Komarov P., Olovnikov I., Vaury C., Jensen S., Kalmykova A. 2018. Transcriptional and chromatin changes accompanying de novo formation of transgenic piRNA clusters. RNA. 24 (4), 574‒584.

    Article  Google Scholar 

  24. Kotnova A.P., Salenko V.B., Lyubomirskaya N.V., Ilyin Yu.V. 2009. Structural organization of heterochromatin in Drosophila melanogaster: Inverted repeats of transposable element clusters. Dokl. Biochem. Biophys.429, 293–295.

    Article  CAS  Google Scholar 

  25. Bergman C.M., Quesneville H., Anxolabéhère D., Ashburner M. 2006. Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome. Genome Biol. 7 (11), R112.

    Article  Google Scholar 

  26. Bartolomé C., Bello X., Maside X. 2009. Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes. Genome Biol.10 (2), R22.

    Article  Google Scholar 

  27. Salenko V.B., Kotnova A.P., Lyubomirskaya N.V., Ilyin Yu.V. 2008. Russian–European Workshop on DNA Repair and Epigenetic Regulation of Genome Stability Abstract Book, St. Petersburg, Russia, Abstract 23, p. 81.

Download references

Funding

This work was supported by the grant of the Program for Basic Research of the Presidium of the Russian Academy of Sciences “Postgenomic Technologies and Promising Solutions in Biomedicine” on the topic: “Assembly of RNP particles of noncoding transcripts and delayed translation transcripts.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Kotnova.

Ethics declarations

The authors declare no conflict of interest.

This work does not contain any research involving humans or animals as research objects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotnova, A.P., Ilyin, Y.V. Comparative Analysis of the Structure of Three piRNA Clusters in the Drosophila melanogaster Genome. Mol Biol 54, 374–381 (2020). https://doi.org/10.1134/S0026893320030085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320030085

Keywords:

Navigation