Skip to main content
Log in

Maintenance of Plasmid Expression in vivo Depends Primarily on the CpG Contents of the Vector and Transgene

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Plasmid-mediated gene therapy, being a safe and relatively inexpensive therapeutic strategy, is plagued by a fast silencing of transgene expression. The silencing severely reduces the long-term efficiency of plasmid vectors. We have earlier constructed a low-CpG pMBR2 plasmid vector supporting prolonged expression of transgenes in mesenchymal stem cells in vitro. Long-term expression from the pMBR2 vector was studied for the wild-type mouse secreted alkaline phosphatase gene (mSEAPTwt) and its version devoid of CpGs (mSEAP0) after vector electroporation into mouse hindlimb muscles and hydrodynamic delivery to the liver. The mSEAP levels in the blood were measured over one year. With the pMBR2-mSEAP0 construct, the mSEAP levels in leg muscles increased more than 2.5-fold in the first two months and remained higher than the initial level until the end of the experiment. Far lower expression levels were observed with the control pCDNA3.1-mSEAP0 construct. Expression from pMBR2-mSEAPwt decreased to about 40% after 6 months and remained at similar levels thereafter. In the mouse liver, expression from pMBR2-mSEAP0 was approximately halved within the first 18 weeks and then decrease slowly to the final 17% level. Expression from pMBR2-mSEAPwt initially dropped to 18% and remained at approximately 10% thereafter. In contrast, expression from pCDNA3.1-mSEAP0 sharply dropped to 5% after 2 weeks and remained at nearly zero levels throughout the rest of the experiment. Thus, both vector and transgene should have significantly reduced CpG contents to ensure prolonged plasmid-mediated expression in the liver, while minimizing the vector CpG content is sufficient for expression in skeletal muscles. The results suggested additionally that the localization of S/MAR elements within the transcription unit, in contrast to their outside location, results in significant reduction of the level of secreted, but not cytoplasmic, proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Raper S.E., Chirmule N., Lee F.S., Wivel N.A., Bagg A., Gao G.P., Wilson J.M., Batshaw M.L. 2003. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab.80 (1‒2), 148–158.

    Article  CAS  PubMed  Google Scholar 

  2. Manno C.S., Pierce G.F., Arruda V.R., Glader B., Ragni M., Rasko J.J., Ozelo M.C., Hoots K., Blatt P., Konkle B., Dake M., Kaye R., Razavi M., Zajko A., Zehnder J., et al. 2006. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med. 12 (3), 342–347.

    Article  CAS  PubMed  Google Scholar 

  3. Howe S.J., Mansour M.R., Schwarzwaelder K., Bartholomae C., Hubank M., Kempski H., Brugman M.H., Pike-Overzet K., Chatters S.J., de Ridder D., Gilmour K.C., Adams S., Thornhill S.I., Parsley K.L., Staal F.J., et al. 2008. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Invest.118 (9), 3143–3150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Davé U.P., Akagi K., Tripathi R., Cleveland S.M., Thompson M.A., Yi M., Stephens R., Downing J.R., Jenkins N.A., Copeland N.G. 2009. Murine leukemias with retroviral insertions at Lmo2 are predictive of the leukemias induced in SCID-X1 patients following retroviral gene therapy. PLoS Genet.5 (5), e1000491.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hinderer C., Katz N., Buza E.L., Dyer C., Goode T., Bell P., Richman L.K., Wilson J.M. 2018. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum. Gene Ther.29 (3), 285‒298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Handorf A.M., Sollinger H.W., Alam T. 2015. Insulin gene therapy for type 1 diabetes mellitus. Exp. Clin. Transplant.13 (Suppl. 1), 37‒45.

    PubMed  Google Scholar 

  7. Viecelli H.M., Harbottle R.P., Wong S.P., Schlegel A., Chuah M.K., VandenDriessche T., Harding C.O., Thöny B. 2014. Treatment of phenylketonuria using minicircle-based naked-DNA gene transfer to murine liver. Hepatology.60 (3), 1035‒1043.

    Article  CAS  PubMed  Google Scholar 

  8. High K.A. 2011. Gene therapy for haemophilia: A long and winding road. J. Thromb. Haemost.9 (Suppl. 1), 2‒11.

    Article  CAS  PubMed  Google Scholar 

  9. Gruntman A.M., Flotte T.R. 2017. Therapeutics: Gene therapy for alpha-1 antitrypsin deficiency. Methods Mol. Biol.1639, 267‒275.

    Article  CAS  PubMed  Google Scholar 

  10. Robinson-Hamm J.N., Gersbach C.A. 2016. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy. Hum. Genet.135 (9), 1029‒1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rissanen T.T., Vajanto I., Ylä-Herttuala S. 2001. Gene therapy for therapeutic angiogenesis in critically ischaemic lower limb: On the way to the clinic. Eur. J. Clin. Invest.31 (8), 651‒666.

    Article  CAS  PubMed  Google Scholar 

  12. Murakami T., Sunada Y. 2011. Plasmid DNA gene therapy by electroporation: principles and recent advances. Curr. Gene Ther.11 (6), 447‒456.

    Article  CAS  PubMed  Google Scholar 

  13. Herweijer H., Wolff J.A. 2007. Gene therapy progress and prospects: hydrodynamic gene delivery. Gene Ther.14 (2), 99‒107.

    Article  CAS  PubMed  Google Scholar 

  14. Wells D.J. 2004. Opening the floodgates: Clinically applicable hydrodynamic delivery of plasmid DNA to skeletal muscle. Mol. Ther.10 (2), 207‒208.

    Article  CAS  PubMed  Google Scholar 

  15. Sun J., Wang Y., Yang J., Du D., Li Z., Wei J., Yang A. 2012. Long-term and stable correction of uremic anemia by intramuscular injection of plasmids containing hypoxia-regulated system of erythropoietin expression. Exp. Mol. Med.44 (11), 674‒683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morrissey D., van Pijkeren J.P., Rajendran S., Collins S.A., Casey G., O’Sullivan G.C., Tangney M. 2012. Control and augmentation of long-term plasmid transgene expression in vivo in murine muscle tissue and ex vivo in patient mesenchymal tissue. J. Biomed. Biotechnol.2012, 379845.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Yamano S., Dai J., Hanatani S., Haku K., Yamanaka T., Ishioka M., Takayama T., Yuvienco C., Khapli S., Moursi A.M., Montclare J.K. 2014. Long-term efficient gene delivery using polyethylenimine with modified Tat peptide. Biomaterials. 35 (5), 1705‒1715.

    Article  CAS  PubMed  Google Scholar 

  18. Yokoo T., Kamimura K., Suda T., Kanefuji T., Oda M., Zhang G., Liu D., Aoyagi Y. 2013. Novel electric power-driven hydrodynamic injection system for gene delivery: safety and efficacy of human factor IX delivery in rats. Gene Ther.20 (8), 816‒823.

    Article  CAS  PubMed  Google Scholar 

  19. Pergolizzi R.G., Jin G., Chan D., Pierre L., Bussel J., Ferris B., Leopold P.L., Crystal R.G. 2006. Correction of a murine model of von Willebrand disease by gene transfer. Blood.108 (3), 862‒869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Meyer S.F., Vandeputte N., Pareyn I., Petrus I., Lenting P.J., Chuah M.K., VandenDriessche T., Deckmyn H., Vanhoorelbeke K. 2008. Restoration of plasma von Willebrand factor deficiency is sufficient to correct thrombus formation after gene therapy for severe von Willebrand disease. Arterioscler. Thromb. Vasc. Biol.28 (9), 1621‒1626.

    Article  CAS  PubMed  Google Scholar 

  21. Magnusson T., Haase R., Schleef M., Wagner E., Ogris M. 2011. Sustained, high transgene expression in liver with plasmid vectors using optimized promoter-enhancer combinations. J. Gene Med.13 (7‒8), 382‒391.

    Article  CAS  PubMed  Google Scholar 

  22. Cim A., Sawyer G.J., Zhang X., Su H., Collins L., Jones P., Antoniou M., Reynes J.P., Lipps H.J., Fabre J.W. 2012. In vivo studies on non-viral transdifferentiation of liver cells towards pancreatic β cells. J. Endocrinol.214 (3), 277‒288.

    Article  CAS  PubMed  Google Scholar 

  23. Wong P., Argyros O., Coutelle C., Harbottle R.P. 2011. Non-viral S/MAR vectors replicate episomally in vivo when provided with a selective advantage. Gene Ther.18 (1), 82‒87.

    Article  CAS  PubMed  Google Scholar 

  24. Chen Z.Y., Yant S.R., He C.Y., Meuse L., Shen S., Kay M.A. 2001. Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver. Mol. Ther.3 (3), 403‒410.

    Article  CAS  PubMed  Google Scholar 

  25. Gracey Maniar L.E., Maniar J.M., Chen Z.Y., Lu J., Fire A.Z., Kay M.A. 2013. Minicircle DNA vectors achieve sustained expression reflected by active chromatin and transcriptional level. Mol. Ther.21 (1), 131‒138.

    Article  CAS  PubMed  Google Scholar 

  26. Yew N.S., Zhao H., Przybylska M., Wu I.H., Tousignant J.D., Scheule R.K., Cheng S.H. 2002. CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo.Mol. Ther.5 (6), 731‒738.

    Article  CAS  PubMed  Google Scholar 

  27. Argyros O., Wong S.P., Niceta M., Waddington S.N., Howe S.J., Coutelle C., Miller A.D., Harbottle R.P. 2008. Persistent episomal transgene expression in liver following delivery of a scaffold/matrix attachment region containing non-viral vector. Gene Ther.15 (24), 1593–1605.

    Article  CAS  PubMed  Google Scholar 

  28. Bruter A.V., Kandarakov O.F., Belyavsky A.V. 2018. Persistence of plasmid-mediated expression of transgenes in human mesenchymal stem cells depends primarily on CpG levels of both vector and transgene. J. Gene Med.20 (2‒3), e3009.

    Article  PubMed  CAS  Google Scholar 

  29. Maelandsmo G.M., Ross P.J., Pavliv M., Meulenbroek R.A., Evelegh C., Muruve D.A., Graham F.L., Parks R.J. 2005. Use of a murine secreted alkaline phosphatase as a non-immunogenic reporter gene in mice. J. Gene Med.7 (3), 307‒315.

    Article  CAS  PubMed  Google Scholar 

  30. Jenke A.C., Stehle I.M., Herrmann F., Eisenberger T., Baiker A., Bode J., Fackelmayer F.O., Lipps H.J. 2004. Nuclear scaffold/matrix attached region modules linked to a transcription unit are sufficient for replication and maintenance of a mammalian episome. Proc. Natl. Acad. Sci. U. S. A.101 (31), 11322–11327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haase R., Argyros O., Wong S.P., Harbottle R.P., Lipps H.J., Ogris M., Magnusson T., Vizoso Pinto M.G., Haas J., Baiker A. 2010. pEPito: A significantly improved non-viral episomal expression vector for mammalian cells. BMC Biotechnol.10, 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bazzani R.P., Pringle I.A., Connolly M.M., Davies L.A., Sumner-Jones S.G., Schleef M., Hyde S.C., Gill D.R. 2016. Transgene sequences free of CG dinucleotides lead to high level, long-term expression in the lung independent of plasmid backbone design. Biomaterials.93, 20‒26.

    Article  CAS  PubMed  Google Scholar 

  33. Kanda G.N., Miyamoto S., Kobayashi M., Matsuoka I., Harashima H., Kamiya H. 2014. Anatomy of plasmid DNAs with anti-silencing elements. Int. J. Pharm.464 (1‒2), 27‒33.

    Article  CAS  PubMed  Google Scholar 

  34. Hodges B.L., Taylor K.M., Joseph M.F., Bourgeois S.A., Scheule R.K. 2004. Long-term transgene expression from plasmid DNA gene therapy vectors is negatively affected by CpG dinucleotides. Mol. Ther.10 (2), 269‒278.

    Article  CAS  PubMed  Google Scholar 

  35. Chen Z.Y., Riu E., He C.Y., Xu H., Kay M.A. 2008. Silencing of episomal transgene expression in liver by plasmid bacterial backbone DNA is independent of CpG methylation. Mol. Ther.16 (3), 548‒556.

    Article  CAS  PubMed  Google Scholar 

  36. Hemmi H., Takeuchi O., Kawai T., Kaisho T., Sato S., Sanjo H., Matsumoto M., Hoshino K., Wagner H., Takeda K., Akira S. 2000. A Toll-like receptor recognizes bacterial DNA. Nature.408 (6813), 740‒745.

    Article  CAS  PubMed  Google Scholar 

  37. Hyde S.C., Pringle I.A., Abdullah S., Lawton A.E., Davies L.A., Varathalingam A., Nunez-Alonso G., Green A.M., Bazzani R.P., Sumner-Jones S.G., Chan M., Li H., Yew N.S., Cheng S.H., Boyd A.C., et al. 2008. CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat. Biotechnol.26 (5), 549–551.

    Article  CAS  PubMed  Google Scholar 

  38. Tan Y., Liu F., Li Z., Li S., Huang L. 2001. Sequential injection of cationic liposome and plasmid DNA effectively transfects the lung with minimal inflammatory toxicity. Mol. Ther.3 (5, Pt. 1), 673‒682.

    Article  CAS  PubMed  Google Scholar 

  39. Pringle I.A., Raman S., Sharp W.W., Cheng S.H., Hyde S.C., Gill D.R. 2005. Detection of plasmid DNA vectors following gene transfer to the murine airways. Gene Ther.12 (15), 1206‒1214.

    Article  CAS  PubMed  Google Scholar 

  40. Chen Z.Y., He C.Y., Ehrhardt A., Kay M.A. 2003. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol. Ther.8 (3), 495‒500.

    Article  CAS  PubMed  Google Scholar 

  41. Chen Z.Y., He C.Y., Kay M.A. 2005. Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo.Hum. Gene Ther.16 (1), 126‒131.

    Article  CAS  PubMed  Google Scholar 

  42. Akef A., Zhang H., Masuda S., Palazzo A.F. 2013. Trafficking of mRNAs containing ALREX-promoting elements through nuclear speckles. Nucleus.4 (4), 326‒340.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Patil V., Ward R.L., Hesson L.B. 2014. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics.9 (6), 823–828.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 18-14-00300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Belyavsky.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. Experiments with animals were performed in accordance with the ARRIVE guidance and the European Union directive 2010/63/EU on the protection of animals used for scientific purposes. The study protocol was approved by the Ethics Committee for animal research at the Blokhin National Cancer Research Center.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruter, A.V., Kalashnikova, M.V., Prytyko, A.P. et al. Maintenance of Plasmid Expression in vivo Depends Primarily on the CpG Contents of the Vector and Transgene. Mol Biol 54, 427–435 (2020). https://doi.org/10.1134/S0026893320030048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320030048

Keywords:

Navigation