Skip to main content
Log in

Prospective Applications of Single-Domain Antibodies in Biomedicine

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Methods that utilize highly specific antibodies, anti-idiotypic antibodies, various recombinant molecules with antibody properties and immunocorrection and immunoprophylaxis with the help of vaccines are in demand and are intensely developed in the field of biomedicine. Techniques to generate specific single-domain recombinant antibodies (nanobodies) and their derivatives have raised great expectations in the past years. The review considers the recent literature data on the use of nanobodies in basic research, diagnosis, and design of new immunotherapeutic agents. Special sections focus on the prospects of using nanobodies as targeted molecules of microbiota components, the use of anti-idiotypic nanobodies, and a search for promising targets for early diagnosis based on nanobodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Tillib S.V. 2011. “Camel nanoantibody” is an efficient tool for research, diagnostics and therapy. Mol. Biol. (Moscow). 45 (1), 66‒73.

    Article  CAS  Google Scholar 

  2. Hamers-Casterman C., Atarhouch T., Muyldermans S., Robinson G., Hamers C., Songa E.B., Bendahman N., Hamers R. 1993. Naturally occurring antibodies devoid of light chains. Nature.363, 446–448.

    Article  CAS  PubMed  Google Scholar 

  3. Flajnik M.F., Kasahara M. 2010. Origin and evolution of the adaptive immune system: Genetic events and selective pressures. Nat. Rev. Genet. 11, 47–59.

    Article  CAS  PubMed  Google Scholar 

  4. Harmsen M.M., De Haard H.J. 2007. Properties, production, and applications of camelid single-domain antibody fragments. Appl. Microbiol. Biotechnol. 77, 13–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Muyldermans S., Baral T.N., Retamozzo V.C., De Baetselier P., De Genst E., Kinne J., Leonhardt H., Magez S., Nguyen V.K., Revets H., Rothbauer U., Stijlemans B., Tillib S., Wernery U., Wyns L., et al. 2009. Camelid immunoglobulins and nanobody technology. Vet. Immunol. Immunopathol.128, 178–183.

    Article  CAS  PubMed  Google Scholar 

  6. Muyldermans S. 2013. Nanobodies: Natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797.

    Article  CAS  PubMed  Google Scholar 

  7. Gorshkova E.N., Vasilenko E.A., Tillib S.V., Astrakhantseva I.V. 2016. Single-domain antibodies and bioengineering drugs on their basis: New opportunities for diagnostics and therapy. Med. Immunol.18 (6), 505‒520.

    Article  Google Scholar 

  8. Steeland S., Vandenbroucke R.E., Libert C. 2016. Nanobodies as therapeutics: Big opportunities for small antibodies. Drug Discov. Today.21, 1076‒1113.

    Article  CAS  PubMed  Google Scholar 

  9. Van Audenhove I., Gettemans J. 2016. Nanobodies as versatile tools to understand, diagnose, visualize and treat cancer. EBioMed.8, 40‒48.

    Article  Google Scholar 

  10. Iezzi M.E., Policastro L., Werbajh S., Podhajcer O., Canziani G.A. 2018. Single-domain antibodies and the promise of modular targeting in cancer imaging and treatment. Front. Immunol.9, 273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Keyaerts M., Xavier C., Heemskerk J., Devoogdt N., Everaert H., Ackaert C., Vanhoeij M., Duhoux F.P., Gevaert T., Simon P., Schallier D., Fontaine C., Vaneycken I., Vanhove C., De Greve J., et al. 2015. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2-expression in breast carcinoma. J. Nucl. Med.57 (1), 27‒33.

    Article  PubMed  CAS  Google Scholar 

  12. Rothbauer U., Zolghadr K., Tillib S., Nowak D., Schermelleh L., Gahl A., Backmann N., Conrath K., Muyldermans S., Cardoso M.C., Leonhardt H. 2006. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods.3, 887‒889.

    Article  CAS  PubMed  Google Scholar 

  13. Irannejad R., Tomshine J.C., Tomshine J.R., Chevalier M., Mahoney J.P., Steyaert J., Rasmussen S.G., Sunahara R.K., El-Samad H., Huang B., von Zastrow M. 2013. Conformational biosensors reveal GPCR signalling from endosomes. Nature.495, 534–538.

    Article  CAS  PubMed  Google Scholar 

  14. Manglik A., Kobilka B.K., Steyaert J. 2017. Nanobodies to study G protein-coupled receptor structure and function. Annu. Rev. Pharmacol. Toxicol.57, 19‒37.

    Article  CAS  PubMed  Google Scholar 

  15. Hu Y., Liu C., Muyldermans S. 2017. Nanobody-based delivery systems for diagnosis and targeted tumor therapy. Front. Immunol. 8, 1442.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Efimov G.A., Kruglov A.A., Khlopchatnikova Z.V., Rozov F.N., Mokhonov V.V., Rose-John S., Scheller J., Gordon S., Stacey M., Drutskaya M.S., Tillib S.V., Nedospasov S.A. 2016. Cell type-restricted anti-cytokine therapy: TNF inhibition from one pathogenic source. Proc. Natl. Acad. Sci. U. S. A.113, 3006‒3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nosenko M.A., Atretkhany K.N., Mokhonov V.V., Efimov G.A., Kruglov A.A., Tillib S.V., Drutskaya M.S., Nedospasov S.A. 2017. VHH-based bispecific antibodies targeting cytokine production. Front. Immunol.8, 1073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Stone E., Hirama T., Tanha J., Tong-Sevinc H., Li S., MacKenzie C.R., Zhang J. 2007. The assembly of single domain antibodies into bispecific decavalent molecules. J. Immunol. Methods.318, 88‒94.

    Article  CAS  PubMed  Google Scholar 

  19. Hultberg A., Temperton N.J., Rosseels V., Koenders M., Gonzalez-Pajuelo M., Schepens B., Ibañez L.I., Vanlandschoot P., Schillemans J., Saunders M., Weiss R.A., Saelens X., Melero J.A., Verrips C.T., Van Gucht S., de Haard H.J. 2011. Llama-derived single domain antibodies to build multivalent, superpotent and broadened neutralizing anti-viral molecules. PLoS One.6, e17665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tillib S., Ivanova T.I., Vasilev L.A., Rutovskaya M.V., Saakyan S.A., Gribova I.Y., Tutykhina I.L., Sedova E.S., Lysenko A.A., Shmarov M.M., Logunov D.Y., Naroditsky B.S., Gintsburg A.L. 2013. Formatted single-domain antibodies can protect mice against infection with influenza virus (H5N2). Antiviral Res.97, 245‒254.

    Article  CAS  PubMed  Google Scholar 

  21. Tutykhina I., Sedova E., Gribova I., Ivanova T.I., Vasilev L.A., Rutovskaya M.V., Lysenko A., Shmarov M., Logunov D., Naroditsky B., Tillib S., Gintsburg A. 2013. Passive immunization with a recombinant adenovirus expressing an HA (H5)-specific single-domain antibody protects mice from lethal influenza infection. Antiviral Res.97, 717‒720.

    Article  CAS  Google Scholar 

  22. Huet H.A., Growney J.D., Johnson J.A., Li J., Bilic S., Ostrom L., Zafari M., Kowal C., Yang G., Royo A., Jensen M., Dombrecht B., Meerschaert K.R., Kolkman J.A., Cromie K.D., et al. 2014. Multivalent nanobodies targeting death receptor 5 elicit superior tumor cell killing through efficient caspase induction. mAbs.6, 1560‒1570.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Garas M.N., Tillib S.V., Zubkova O.V., Rogozhin V.N., Ivanova T.I., Vasil’ev L.A., Logunov D.Yu., Shmarov M.M., Tutykhina I.L., Esmagambetov I.B., Gribova I.Yu., Bandelyuk A.S., Naroditsky B.S., Gintsburg A.L. 2014. Construction of a pIX-modified adenovirus vector able to effectively bind to nanoantibodies for targeting. Acta Naturae.6 (2), 95–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burmistrova D.A., Tillib S.V., Shcheblyakov D.V., Dolzhikova I.V., Shcherbinin D.N., Zubkova O.V., Ivanova T.I., Tukhvatulin A.I., Shmarov M.M., Logunov D.Y., Naroditsky B.S., Gintsburg A.L. 2016. Genetic passive immunization with adenoviral vector expressing chimeric nanobody-Fc molecules as therapy for genital infection caused by Mycoplasma hominis.PLoS One. 11, e0150958.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hussack G., Luo Y., Veldhuis L., Hall J.C., Tanha J., Mackenzie R. 2009. Multivalent anchoring and oriented display of single-domain antibodies on cellulose. Sensors (Basel). 9, 5351‒5367.

    Article  CAS  PubMed  Google Scholar 

  26. Tillib S.V., Privezentseva M.E., Ivanova T.I., Vasilev L.F., Efimov G.A., Gurskiy Ya.G., Georgiev G.P., Goldman I.L., Sadchikova E.R. 2014. Single-domain antibody-based ligands for immunoaffinity separation of recombinant human lactoferrin from the goat lactoferrin of trasgenic goat milk. J. Chromatogr. B.949950, 48‒57.

    Article  CAS  Google Scholar 

  27. Goryainova O.S., Ivanova T.I., Rutovskaya M.V., Tillib S.V. 2017. A method for the parallel and sequential generation of single-domain antibodies for the proteomic analysis of human blood plasma. Mol. Biol. (Moscow). 51 (6), 855–864.

    Article  CAS  Google Scholar 

  28. Bannas P., Hambach J., Koch-Nolte F. 2017. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front. Immunol.8, 1603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kijanka M., Dorresteijn B., Oliveira S., van Bergen en Henegouwen P.M. 2015. Nanobody-based cancer therapy of solid tumors. Nanomedicine (London). 10 (1), 161–174.

    Article  CAS  PubMed  Google Scholar 

  30. Danquah W., Meyer-Schwesinger C., Rissiek B., Pinto C., Serracant-Prat A.,Amadi M., Iacenda D., Knop J.H., Hammel A., Bergmann P., Schwarz N., Assunção J., Rotthier W., Haag F., Tolosa E., et al. 2016. Nanobodies that block gating of the P2X7 ion channel ameliorate inflammation. Sci. Transl. Med.8 (366), 366ra162.

    Article  PubMed  CAS  Google Scholar 

  31. Koch-Nolte F., Reyelt J., Schossow B., Schwarz N., Scheuplein F., Rothenburg S., Haag F., Alzogaray V., Cauerhff A., Goldbaum F.A. 2007. Single domain antibodies from llama effectively and specifically block T cell ecto-ADP-ribosyltransferase ART2.2 in vivo.FASEB J.21 (13), 3490–3498.

    Article  CAS  PubMed  Google Scholar 

  32. Araste F., Ebrahimizadeh W., Rasooli I., Rajabibazl M., Mousavi Gargari S.L. 2014. A novel VHH nanobody against the active site (the CA domain) of tumor-associated, carbonic anhydrase isoform IX and its usefulness for cancer diagnosis. Biotechnol. Lett.36 (1), 21–28.

    Article  CAS  PubMed  Google Scholar 

  33. Qasemi M., Behdani M., Shokrgozar M.A., Molla-Kazemiha V., Mohseni-Kuchesfahani H., Habibi-Anbouhi M. 2016. Construction and expression of an anti-VEGFR2 nanobody-Fc fusionbody in NS0 host cell. Protein Expr. Purif.123, 19–25.

    Article  CAS  PubMed  Google Scholar 

  34. Albert S., Arndt C., Feldmann A., Bergmann R., Bachmann D., Koristka S., Ludwig F., Ziller-Walter P., Kegler A., Gärtner S., Schmitz M., Ehninger A., Cartellieri M., Ehninger G., Pietzsch H.J., et al. 2017. A novel nanobody-based target module for retargeting of T lymphocytes to EGFR-expressing cancer cells via the modular UniCAR platform. Oncoimmunology.6 (4), e1287246.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Massa S., Xavier C., De Vos J., Caveliers V., Lahoutte T., Muyldermans S., Devoogdt N. 2014. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging. Bioconjug. Chem.25 (5), 979–988.

    Article  CAS  PubMed  Google Scholar 

  36. van Lith S.A., van Duijnhoven S.M., Navis A.C., Leenders W.P., Dolk E., Wennink J.W., van Nostrum C.F., van Hest J.C. 2017. Legomedicine: A versatile chemo-enzymatic approach for the preparation of targeted dual-labeled llama antibody-nanoparticle conjugates. Bioconjug. Chem.28 (2), 539–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bakhtiari S.H., Rahbarizadeh F., Hasannia S., Ahmadvand D., Iri-Sofla F.J., Rasaee M.J. 2009. Anti-MUC1 nanobody can redirect T-body cytotoxic effector function. Hybridoma (Larchmt.). 28 (2), 85–92.

    Article  CAS  Google Scholar 

  38. Khaleghi S., Rahbarizadeh F., Ahmadvand D., Rasaee M.J., Pognonec P. 2012. A caspase 8-based suicide switch induces apoptosis in nanobody-directed chimeric receptor expressing T cells. Int. J. Hematol.95 (4), 434–444.

    Article  CAS  PubMed  Google Scholar 

  39. Jamnani F.R., Rahbarizadeh F., Shokrgozar M.A., Mahboudi F., Ahmadvand D., Sharifzadeh Z., Parhamifar L., Moghimi S.M. 2014. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors: Towards tumor-directed oligoclonal T cell therapy. Biochim. Biophys. Acta. 1840 (1), 378–386.

  40. Verhelle A., Nair N., Everaert I., Van Overbeke W., Supply L., Zwaenepoel O., Peleman C., Van Dorpe J., Lahoutte T., Devoogdt N., Derave W., Chuah M.K., Van den Driessche T., Gettemans J. 2017. AAV9 delivered bispecific nanobody attenuates amyloid burden in the gelsolin amyloidosis mouse model. Hum. Mol. Genet.26 (7), 1353–1364.

    Article  CAS  PubMed  Google Scholar 

  41. Duggan S. 2018. Caplacizumab: First global approval. Drugs.78, 1639–1642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Callewaert F., Roodt J., Ulrichts H., Stohr T., van Rensburg W.J., Lamprecht S., Rossenu S., Priem S., Willems W., Holz J.B. 2012. Evaluation of efficacy and safety of the anti-VWF nanobody ALX-0681 in a preclinical baboon model of acquired thrombotic thrombocytopenic purpura. Blood.120, 3603–3610.

    Article  CAS  PubMed  Google Scholar 

  43. Ulrichts H., Silence K., Schoolmeester A., de Jaegere P., Rossenu S., Roodt J., Priem S., Lauwereys M., Casteels P., Van Bockstaele F., Verschueren K., Stanssens P., Baumeister J., Holz J.B. 2011. Antithrombotic drug candidate ALX-0081 shows superior preclinical efficacy and safety compared with currently marketed antiplatelet drugs. Blood.118, 757–765.

    Article  CAS  PubMed  Google Scholar 

  44. Könning D., Zielonka S., Grzeschik J., Empting M., Valldorf B., Krah S., Schröter C., Sellmann C., Hock B., Kolmar H. 2017. Camelid and shark single domain antibodies: Structural features and therapeutic potential. Curr. Opin. Struct. Biol.45, 10‒16.

    Article  PubMed  CAS  Google Scholar 

  45. Detalle L., Stohr T., Palomo C., Piedra P.A., Gilbert B.E., Mas V., Millar A., Power U.F., Stortelers C., Allosery K., Melero J.A., Depla E. 2015. Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection. Antimicrob. Agents Chemother.60, 6‒13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Jahnichen S., Blanchetot C., Maussang D., Gonzalez-Pajuelo M., Chow K.Y., Bosch L., De Vrieze S., Serruys B., Ulrichts H., Vandevelde W., Saunders M., De Haard H.J., Schols D., Leurs R., Vanlandschoot P., et al. 2010. CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc. Natl. Acad. Sci. U. S. A.107, 20565‒20570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maussang D., Mujić-Delić A., Descamps F.J., Stortelers C., Vanlandschoot P., Stigter-van Walsum M., Vischer H.F., van Roy M., Vosjan M., Gonzalez-Pajuelo M., van Dongen G.A., Merchiers P., van Rompaey P., Smit M.J. 2013. Llama-derived single variable domains (nanobodies) directed against chemokine receptor CXCR7 reduce head and neck cancer cell growth in vivo.J. Biol. Chem.288, 29562‒29572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mujić-Delić A., de Wit R.H., Verkaar F., Smit M.J. 2014. GPCR-targeting nanobodies: Attractive research tools, diagnostics, and therapeutics. Trends Pharmacol. Sci.35, 247‒255.

    Article  PubMed  CAS  Google Scholar 

  49. Van Roy M., Ververken C., Beirnaert E., Hoefman S., Kolkman J., Vierboom M., Breedveld E., ‘t Hart B., Poelmans S., Bontinck L., Hemeryck A., Jacobs S., Baumeister J., Ulrichts H. 2015. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Res. Ther.17, 135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ding L., Tian C., Feng S., Fida G., Zhang C., Ma Y., Ai G., Achilefu S., Gu Y. 2015. Small sized EGFR1 and HER2 specific bifunctional antibody for targeted cancer therapy. Theranostics.5, 378‒398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Gilbert J.A., Blaser M.J., Caporaso J.G., Jansson J.K., Lynch S.V., Knight R. 2018. Current understanding of the human microbiome. Nat. Med.24, 392‒400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sitkin S.I., Vakhitov T.Ya., Demyanova E.V. 2018. Microbiome, colonic dysbiosis, and intestinal inflammatory diseases: When finction is more important than taxonomy. Al’manakh Klin. Med.46, 396–425.

    Article  Google Scholar 

  53. Brüssow H. 2016. Biome engineering-2020. Microb. Biotechnol. 9, 553–563.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Timmis K., Timmis J.K., Brüssow H., Fernández L.A. 2018. Synthetic consortia of nanobody-coupled and formatted bacteria for prophylaxis and therapy interventions targeting microbiome dysbiosis-associated diseases and co-morbidities. Microb. Biotechnol. 12, 58‒65.

    Article  PubMed Central  Google Scholar 

  55. de Lorenzo V. 2008. Systems biology approaches to bioremediation. Curr. Opin. Biotechnol.19, 579–589.

    Article  CAS  PubMed  Google Scholar 

  56. Salema V., Fernandez L.A. 2017. Escherichia coli surface display for the selection of nanobodies. Microb. Biotechnol.10, 1468–1484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pinero-Lambea C., Ruano-Gallego D., Fernandez L.A. 2015. Engineered bacteria as therapeutic agents. Curr. Opin. Biotechnol.35, 94–102.

    Article  CAS  PubMed  Google Scholar 

  58. Glass D.S., Riedel-Kruse I.H. 2018. A synthetic bacterial cell–cell adhesion toolbox for programming multicellular morphologies and patterns. Cell.174, 649–658.

    Article  CAS  PubMed  Google Scholar 

  59. Bermudez-Humaran L.G., Langella P. 2018. Live bacterial biotherapeutics in the clinic. Nat. Biotechnol. 36, 816–818.

    Article  CAS  PubMed  Google Scholar 

  60. Abu-Shakra M., Shoenfeld Y. 2014. Idiotypes and anti-idiotypes. In Autoantibodies, 3rd ed. Eds. Shoenfeld Y., Meroni P.L., Gershwin M.E. Elsevier.

  61. Jerne N.K. 1960. Immunological speculations. Annu. Rev. Microbiol. 14, 341–358.

    Article  CAS  PubMed  Google Scholar 

  62. Jerne N.K. 1974. Towards a network theory of the immune system. Ann. Immunol.125, 373–389.

    CAS  Google Scholar 

  63. Bona C.A. 1998. Idiotype vaccines: Forgotten but not gone. Nat. Med.4, 668‒669.

    Article  CAS  PubMed  Google Scholar 

  64. López-Díaz de Cerio A., Zabalegui N., Rodríguez-Calvillo M., Inogés S., Bendandi M. 2007. Anti-idiotype antibodies in cancer treatment. Oncogene.26, 3594–3602.

    Article  PubMed  CAS  Google Scholar 

  65. Naveed A., Rahman S.U., Arshad M.I., Aslam B. 2018. Recapitulation of the anti-idiotype antibodies as vaccine candidate. Transl. Med. Commun.3, 1.

    Article  Google Scholar 

  66. Yarilin A.A. 2010. Immunologiya (Immunology). Moscow: GEOTAR-Media.

    Google Scholar 

  67. Wesolowski J., Alzogaray V., Reyelt J., Unger M., Juarez K., Urrutia M., Cauerhff A., Danquah W, Rissiek B., Scheuplein F., Schwarz N., Adriouch S., Boyer O., Seman M., Licea A., Serreze D.V., Goldbaum F.A., Haag F., Koch-Nolte F. 2009. Single domain antibodies: Promising experimental and therapeutic tools in infection and immunity. Med. Microbiol. Immunol. 198, 157–174.

  68. Tillib S.V., Vyatchanin A.S., Muyldermans S. 2014. Molecular analysis of heavy chain-only antibodies of Camelus bactrianus.Biochemistry (Moscow). 79 (12), 1382–1390.

    CAS  PubMed  Google Scholar 

  69. Henry K.A., MacKenzie C.R. 2018. Antigen recognition by single-domain antibodies: Structural latitudes and constraints. mAbs.10, 815‒826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li J.W., Xia L., Su Y., Liu H., Xia X., Lu Q., Yang C., Reheman K. 2012. Molecular imprint of enzyme active site by camel nanobodies: Rapid and efficient approach to produce abzymes with alliinase activity. J. Biol. Chem.287, 13713‒13721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang Y., Li P., Majkova Z., Bever C.R., Kim H.J., Zhang Q., Dechant J.E., Gee S.J., Hammock B.D. 2013. Isolation of alpaca anti-idiotypic heavy-chain single-domain antibody for the aflatoxin immunoassay. Anal. Chem.85, 8298‒8303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xu Y., Xiong L., Li Y., Xiong Y., Tu Z., Fu J., Chen B. 2015. Anti-idiotypic nanobody as citrinin mimotope from a naive alpaca heavy chain single domain antibody library. Anal. Bioanal. Chem.407, 5333‒5341.

    Article  CAS  PubMed  Google Scholar 

  73. Qiu Y.L., He Q.H., Xu Y., Bhunia A.K., Tu Z., Chen B., Liu Y.Y. 2015. Deoxynivalenol-mimic nanobody isolated from a naïve phage display nanobody library and its application in immunoassay. Anal. Chim. Acta. 887, 201‒208.

    Article  CAS  PubMed  Google Scholar 

  74. Zarebski L.M., Urrutia M., Goldbaum F.A. 2005. Llama single domain antibodies as a tool for molecular mimicry. J. Mol. Biol.349, 814‒824.

    Article  CAS  PubMed  Google Scholar 

  75. Alvarez-Rueda N., Ladjemi M.Z., Béhar G., Corgnac S., Pugnière M, Roquet F., Bascoul-Mollevi C., Baty D., Pèlegrin A., Navarro-Teulon I. 2009. A llama single domain anti-idiotypic antibody mimicking HER2 as a vaccine: Immunogenicity and efficacy. Vaccine.27, 4826‒4833.

    Article  CAS  PubMed  Google Scholar 

  76. Macdonald I.K., Parsy-Kowalska C.B., Chapman C.J. 2017. Autoantibodies: Opportunities for early cancer detection. Trends Cancer.3, 198‒213.

    Article  CAS  PubMed  Google Scholar 

  77. Ohyama K., Kuroda N. 2013. Immune complexome analysis. Adv. Clin. Chem.60, 129.

    Article  CAS  PubMed  Google Scholar 

  78. Aibara N., Kamohara C., Chauhan A.K., Kishikawa N., Miyata Y., Nakashima M., Kuroda N., Ohyama K. 2018. Selective, sensitive and comprehensive detection of immune complex antigens by immune complexome analysis with papain-digestion and elution. J. Immunol. Methods.461, 85‒90.

    Article  CAS  PubMed  Google Scholar 

  79. van Niel G., D’Angelo G., Raposo G. 2018. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell. Biol.19, 213‒228.

    Article  CAS  PubMed  Google Scholar 

  80. Hoshino A., Costa-Silva B., Shen T.L., Rodrigues G., Hashimoto A., Mark M.T., Molina H., Kohsaka S., Giannatale A.D., Ceder S., Singh S., Williams C., Soplop N., Uryu K., Pharmer L., et al. 2015. Tumour exosome integrins determine organotropic metastasis. Nature.527, 329‒335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Peinado H., Zhang H., Matei I.R., Costa-Silva B., Hoshino A, Rodrigues G., Psaila B., Kaplan R.N., Bromberg J.F., Kang Y., Bissell M.J., Cox T.R., Giaccia A.J., Erler J.T., Hiratsuka S., et al. 2017. Pre-metastatic niches: Organ-specific homes for metastases. Nat. Rev. Cancer.17, 302‒317.

    Article  CAS  PubMed  Google Scholar 

  82. Malek A.V., Samsonov R.B., Chiesi A. 2015. Development of cancer diagnostics and monitoring methods based on analysis of tumor-derived exosomes. Russ. J. Biother.14 (4), 9‒18.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-015-00487).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Tillib.

Ethics declarations

The author declares that he has no real or potential conflict of interest.

This article does not contain any studies involving animals or human subjects performed by the author.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tillib, S.V. Prospective Applications of Single-Domain Antibodies in Biomedicine. Mol Biol 54, 317–326 (2020). https://doi.org/10.1134/S0026893320030164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320030164

Keywords:

Navigation