Skip to main content
Log in

Detecting Large Germline Rearrangements of BRCA1 by Next Generation Tumor Sequencing

  • BIOIMFORMATICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A majority of BRCA1/2 (BRCA) pathogenic variants (PVs) are single nucleotide substitutions or small insertions/deletions. Copy number variations (CNVs), also known as large genomic rearrangements (LGRs), have been identified in BRCA genes. LGRs detection is a mandatory analysis in hereditary breast and ovarian cancer families, if no predisposing PVs are found by sequencing. Next generation sequencing (NGS) may be used to detect structural variation, since quantitative analysis of sequencing reads, when coupled with appropriate bioinformatics tools, is capable of estimating and predicting germline LGRs (gLGRs). However, applying this approach to tumor tissue is challenging, and the pipelines for determination of CNV are yet to be optimized. The aim of this study was to validate the Next Generation Tumor Sequencing (NGTS) technology to detect various gLGRs of BRCA1 locus in surgical tumor tissue samples. In this study, seven different BRCA1 gLGRs, previously found in high-grade serous ovarian cancers (HGSOC) patients, were detected in tumor samples collected from the patients at a time of HGSOC surgery. This study demonstrated that NGS can accurately detect BRCA1 gLGRs in primary tumors, suggesting that gLGR evaluation in BRCA1 locus should be performed in cases when the screening for BRCA alterations starts from tumor instead of blood. NGS sequencing of tumor samples may become the preferred method to detect both somatic and germline gLGRs in BRCA-encoding loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 1.
Fig. 1.
Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Lee J.M., Ledermann J.A., Kohn E.C. 2014. PARP Inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies. Ann. Oncol.25, 32–40.

    Article  Google Scholar 

  2. Pujade-Lauraine E., Ledermann J.A., Selle F., Gebski V., Penson R.T., Oza A.M., Korach J., Huzarski T., Poveda A., Pignata S., Friedlander M., Colombo N., Harter P., Fujiwara K., Ray-Coquard I., et al. 2017. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 18, 1274–1284.

    Article  CAS  Google Scholar 

  3. Ledermann J., Harter P., Gourley C., Friedlander M., Vergote I., Rustin G., Scott C.L., Meier W., Shapira-Frommer R., Safra T., Matei D., Fielding A., Spencer S., Dougherty B., Orr M., et al. 2014. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: A preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol.15, 852–861.

    Article  CAS  Google Scholar 

  4. Endris V., Stenzinger A., Pfarr N., Penzel R., Möbs M., Lenze D., Darb-Esfahani S., Hummel M., Merkelbach-Bruse S., Jung A., Lehmann U., Kreipe H., Kirchner T., Büttner R., Jochum W., et al. 2016. NGS-based BRCA1/2 mutation testing of high-grade serous ovarian cancer tissue: Results and conclusions of the first international round robin trial. Virchows Arch. 468, 697–705.

    Article  CAS  Google Scholar 

  5. Ewald I.P., Ribeiro P.L., Palmero E.I., Cossio S.L, Giugliani R., Ashton-Prolla P. 2009. Genomic rearrangements in BRCA1 and BRCA2: A literature review. Genet. Mol. Biol.32, 437–446.

    Article  CAS  Google Scholar 

  6. Concolino P., Rizza R., Hackmann K., Paris I., Minucci A., De Paolis E., Scambia G., Zuppi C., Schrock E., Capoluongo E. 2017. Characterization of a new BRCA1 rearrangement in an Italian woman with hereditary breast and ovarian cancer syndrome. Breast Cancer Res. Treat. 164, 497–503.

    Article  CAS  Google Scholar 

  7. Puget N., Stoppa-Lyonnet D., Sinilnikova O.M., Pagès S., Lynch H.T., Lenoir G.M., Mazoyer S. 1999. Screening for germ-line rearrangements and regulatory mutations in BRCA1 led to the identification of four new deletions. Cancer Res. 59, 455–461.

    CAS  PubMed  Google Scholar 

  8. Barrois M., Bièche I., Mazoyer S., Champème M.H., Bressac-de Paillerets B., Lidereau R. 2004. Real-time PCR-based gene dosage assay for detecting BRCA1 rearrangements in breast-ovarian cancer families. Clin. Genet. 65, 131–136.

    Article  CAS  Google Scholar 

  9. Minucci A., De Paolis E., Concolino P., De Bonis M., Rizza R., Canu G., Scaglione G.L., Mignone F., Scambia G., Zuppi C., Capoluongo E. 2017. Competitive PCR-High Resolution Melting Analysis (C-PCR-HRMA) for large genomic rearrangements (LGRs) detection: A new approach to assess quantitative status of BRCA1 gene in a reference laboratory. Clin. Chim . Acta. 470, 83–92.

    Article  CAS  Google Scholar 

  10. Frolov A., Prowse A.H., Vanderveer L., Bove B., Wu H., Godwin A.K. 2002. DNA array-based method for detection of large rearrangements in the BRCA1 gene. Genes Chromosomes Cancer.35, 232–241.

    Article  CAS  Google Scholar 

  11. Concolino P., Mello E., Minucci A., Santonocito C., Scambia G., Giardina B., Capoluongo E. 2014. Advanced tools for BRCA1/2 mutational screening: Comparison between two methods for large genomic rearrangements (LGRs) detection. Clin. Chem. Lab. Med. 52, 1119–1127.

    Article  CAS  Google Scholar 

  12. Concolino P., Rizza R., Mignone F., Costella A., Guarino D., Carboni I., Capoluongo E., Santonocito C., Urbani A., Minucci A. 2018. A comprehensive BRCA1/2 NGS pipeline for an immediate Copy Number Variation (CNV) detection in breast and ovarian cancer molecular diagnosis. Clin. Chim. Acta. 480, 173–179.

    Article  CAS  Google Scholar 

  13. Enyedi, Jaksa G., Pintér L., Sükösd F., Gyuris Z., Hajdu A., Határvölgyi E., Priskin K., Haracska L. 2016. Simultaneous detection of BRCA mutations and large genomic rearrangements in germline DNA and FFPE tumor samples. Oncotarget.20, 61845–61859.

    Article  Google Scholar 

  14. Mafficini A., Simbolo M., Parisi A., Rusev B., Luchini C., Cataldo I., Piazzola E., Sperandio N., Turri G., Franchi M., Tortora G., Bovo C., Lawlor R.T., Scarpa A. 2016. BRCA somatic and germline mutation detection in paraffin embedded ovarian cancers by next-generation sequencing. Oncotarget. 7, 1076–1083.

    Article  Google Scholar 

  15. Smith S.A., Easton D.F., Evans D.G., Ponder B.A. 1992. Allele losses in the region 17q12-21 in familial breast and ovarian cancer involve the wild-type chromosome. Nat. Genet.2, 128–131.

    Article  CAS  Google Scholar 

  16. Gudmundsson J., Johannesdottir G., Bergthorsson J.T., Arason A., Ingvarsson S., Egilsson V., Barkardottir R.B. 1995. Different tumor types from BRCA2 carriers show wild-type chromosome deletions on 13q12-q13. Cancer Res. 55, 4830–4832.

    CAS  PubMed  Google Scholar 

  17. Maxwell K.N., Wubbenhorst B., Wenz B.M., De Sloover D., Pluta J., Emery L., Barrett A., Kraya A.A., Anastopoulos I.N., Yu S., Jiang Y., Chen H., Zhang N.R., Hackman N., D’Andrea K., et al. 2017. BRCA locus-specific loss of heterozygosity in germline BRCA1 and BRCA2 carriers. Nat. Commun. 8, 319.

    Article  Google Scholar 

  18. Costella A., De Leo R., Guarino D., D’Indinosante M., Concolino P., Mazzuccato G., Urbani A., Scambia G., Capoluongo E., Fagotti A., Minucci A. 2018. High-resolution melting analysis coupled with next-generation sequencing as a simple tool for the identification of a novel somatic BRCA2 variant: A case report. Hum. Genome Var. 8, 5:10.

    Article  Google Scholar 

  19. Minucci A., Scambia G., Santonocito C., Concolino P., Canu G., Mignone F., Saggese I., Guarino D., Costella A., Molinario R., De Bonis M., Ferrandina G., Petrillo M., Scaglione G.L., Capoluongo E. 2015. Clinical impact on ovarian cancer patients of massive parallel sequencing for BRCA mutation detection: the experience at Gemelli hospital and a literature review. Exp. Rev. Mol. Diagn. 15, 1383–1403.

    Article  CAS  Google Scholar 

  20. Percival N., George A., Gyertson J., Hamill M., Fernandes A., Davies E., Rahman N., Banerjee S. 2016. The integration of BRCA testing into oncology clinics. Br. J. Nurs. 25, 690–694.

    Article  Google Scholar 

  21. George J., Alsop K., Etemadmoghadam D., Hondow H., Mikeska T., Dobrovic A., deFazio A; Australian Ovarian Cancer Study Group, Smyth G.K., Levine D.A., Mitchell G., Bowtell D.D. 2013. Nonequivalent gene expression and copy number alterations in high-grade serous ovarian cancers with BRCA1 and BRCA2 mutations. Clin. Cancer Res. 19, 3474–3484.

    Article  CAS  Google Scholar 

  22. Cancer Genome Atlas Research Network. 2011. Integrated genomic analyses of ovarian carcinoma. Nature.474, 609–615.

  23. Schmidt A.Y., Hansen T.V.O., Ahlborn L.B., Jønson L., Yde C.W., Nielsen F.C. 2017. Next-generation sequencing-based detection of germline copy number variations in BRCA1/BRCA2: validation of a one-step diagnostic workflow. J. Mol. Diagn.19, 809–816.

    Article  CAS  Google Scholar 

  24. Wallace A.J. 2016. New challenges for BRCA testing: A view from the diagnostic laboratory. Eur. J. Hum. Genet.24, S10–8.

    Article  CAS  Google Scholar 

  25. Capone G.L., Putignano A.L., Trujillo Saavedra S., Paganini I., Sestini R., Gensini F., De Rienzo I., Papi L., Porfirio B. 2018. Evaluation of a next-generation sequencing assay for BRCA1 and BRCA2 mutation detection. J. Mol. Diagn. 20, 87–94.

    Article  CAS  Google Scholar 

  26. Pikor L.A., Enfield K.S.S., Cameron H., Lam W.L. 2011. DNA extraction from paraffin-embedded material for genetic and epigenetic analyses. J. Vis. Exp.26, 49.

    Google Scholar 

  27. Tang W., David F.B., Wilson M.M., Barwick B.G., Leyland-Jones B.R., Bouzyk M.M. 2009. DNA extraction from formalin-fixed, paraffin-embedded tissue. Cold Spring Harb. Protoc.2, pdb.prot513.

  28. Ferrer I., Armstrong J., Capellari S., Parchi P., Arzberger T., Bell J., Budka H., Strobel T., Giaccone G., Rossi G., Bogdanovic N., Fakai P., Schmitt A., Riederers P., Al-Sarraj S., et al. 2007. Effects of formalin fixation, paraffin embedding, and time of storage on DNA preservation in brain tissue: A Brain Net Europe study. Brain Pathol.17, 297–303.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Franziska M. Lohmeyer for critically reviewing and editing our manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Angelo Minucci, Claudia Marchetti, Giovanni Scambia, Anna Fagotti. Collection and assembly of data: Angelo Minucci and Giorgia Mazzuccato. Data analysis and interpretation: Angelo Minucci. Manuscript writing: Angelo Minucci. Final approval of manuscript: All authors. Accountable for all aspects of the work: All authors.

Corresponding authors

Correspondence to A. Minucci or A. Urbani.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all patients.

Additional information

Abbreviations: gBRCA, germline BRCA1/2; HGSOC, High Grade Serous Ovarian Cancer; PVs, Pathogenic variants; PARP-1, Poly-(ADP-ribose) polymerase; tBRCA, tumor BRCA; FFPE, formalin-fixed paraffin-embedded; FFT, fresh frozen tissue; NGS, Next generation sequencing; CNVs, Copy number variations; LGRs, large genomic rearrangements; MLPA, multiplex ligation-dependent probe amplification; DoC, depth of coverage; gLGRs, germline large genomic rearrangements; LOH, loss of heterozygosity; NGTS, next generation tumor sequencing.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minucci, A., Mazzuccato, G., Marchetti, C. et al. Detecting Large Germline Rearrangements of BRCA1 by Next Generation Tumor Sequencing. Mol Biol 54, 464–473 (2020). https://doi.org/10.1134/S0026893320030127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320030127

Keywords:

Navigation