Skip to main content
Log in

A Study of the Fertility of a Drosophila melanogaster MS Strain with Impaired Transposition Control of the gypsy Mobile Element

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The flamenco locus is one of the main components of the piRNA pathway of regulation of mobile genetic elements (MGEs) in Drosophila melanogaster. Mutations at this locus lead to an increase in the transposition activity of MGEs and, as a result, to genetic instability. In this paper, the fertility of a genetically unstable MS strain obtained more than 25 years ago and characterized by a mutation in the flamenco locus and the presence of a functionally active copy of gypsy retrotransposon was investigated. Complex violations of the ovarian morphology were revealed in the MS strain in females: defects in the follicular layer and ring channels, as well as degradation of trophocytes, which in turn led to a decrease in reproductive abilities. Analysis of the MS strain transcriptome showed a decrease in the expression level of 40 genes encoding chorionic proteins and expression specificity at different stages of follicle development. In the F1 and F2 hybrid females from the crosses of MS females with wild type males, restoration of reproductive abilities was observed, despite the fact that half of the F2 females had the flamenco genotype and genetic instability caused by transposition of gypsy (according to the ovoD test). Moreover, the frequency of gypsy transposition in the hybrid F2 females with the flamenco genotype doubled in comparison with the MS strain females. Thus, the MS strain had acquired partial suppression of the flamenco phenotype and accumulated several recessive mutations in the genes that control oogenesis after cultivation for over 25 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Cox D.N., Chao A., Baker J., Chang L., Qiao D., Lin H. 1998. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12 (23), 3715–3727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. King F.J., Lin H. 1999. Somatic signaling mediated by fs(1)Yb is essential for germline stem cell maintenance during Drosophila oogenesis. Development. 126 (9), 1833–1844.

    CAS  PubMed  Google Scholar 

  3. Ma X., Wang S., Do T., Song X., Inaba M., Nishimoto Y., Liu L.P., Gao Y., Mao Y., Li H., McDowell W., Park J., Malanowski K., Peak A., Perera A., et al. 2014. Piwi is required in multiple cell types to control germline stem cell lineage development in the Drosophila ovary. PLoS One.9 (3), e90267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Yakushev E.Yu., Mikhaleva E.A., Abramov Yu.A., Sokolova O.A., Zyryanova I.M., Gvozdev V.A., Klenov M.S. 2016. The role of piwi nuclear localization in the differentiation and proliferation of germline stem cells. Mol. Biol. (Moscow). 50 (4), 630–636.

    Article  CAS  Google Scholar 

  5. Megosh H.B., Cox D.N., Campbell C., Lin H. 2006. The role of PIWI and the miRNA machinery in Drosophila germline determination. Curr. Biol. 16 (19), 1884–1894.

    Article  CAS  PubMed  Google Scholar 

  6. Chen J.M., Willers C., Xu J., Wang A., Zheng M.H. 2007. Autologous tenocyte therapy using porcine-derived bioscaffolds for massive rotator cuff defect in rabbits. Tissue Eng.13 (7), 1479–1491.

    Article  CAS  PubMed  Google Scholar 

  7. Atikukke G., Albosta P., Zhang H., Finley R.L., Jr. 2014. A role for Drosophila cyclin J in oogenesis revealed by genetic interactions with the piRNA pathway. Mech. Dev. 133, 64–76.

    Article  CAS  PubMed  Google Scholar 

  8. Pelisson A., Song S.U., Prud’homme N., Smith P.A., Bucheton A., Corces V.G. 1994. Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J.13 (18), 4401–4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mevel-Ninio M., Pelisson A., Kinder J., Campos A.R., Bucheton A. 2007. The flamenco locus controls the gypsy and ZAM retroviruses and is required for Drosophila oogenesis. Genetics.175 (4), 1615–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guida V., Cernilogar F.M., Filograna A., De Gregorio R., Ishizu H., Siomi M.C., Schotta G., Bellenchi G.C., Andrenacci D. 2016. Production of small noncoding RNAs from the flamenco locus is regulated by the gypsy retrotransposon of Drosophila melanogaster.Genetics. 204 (2), 631–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim A.I., Lyubomirskaya N.V., Belyaeva E.S., Shostack N.G., Ilyin Y.V. 1994. The introduction of a transpositionally active copy of retrotransposon gypsy into the stable strain of Drosophila melanogaster causes genetic instability. Mol. Gen. Genet. 242 (4), 472–477.

    Article  CAS  PubMed  Google Scholar 

  12. Razorenova O.V., Karpova N.N., Smirnova Iu.B., Kusulidu L.K., Reneva N.K., Subocheva E.A., Kim A.I., Liubomirskaia N.V., Ilyin Iu.V. 2001. Interlineage distribution and characteristics of the structure of two subfamilies of Drosophila melanogaster MDG4 (gypsy) retrotransposon. Russ. J. Genet.37 (2), 175–182.

    Article  CAS  Google Scholar 

  13. Prud’homme N., Gans M., Masson M., Terzian C., Bucheton A. 1995. Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster.Genetics. 139 (2), 697–711.

    PubMed  PubMed Central  Google Scholar 

  14. Nefedova L.N., Romanova N.I., Kim A.I. 2007. Structural organization characteristics of the DIP1 gene in Drosophila melanogaster strains mutant for the flamenco gene. Russ. J. Genet.43 (1), 56‒63.

    Article  CAS  Google Scholar 

  15. Kuzin A.B., Lyubomirskaya N.V., Ilyin Yu.V., Khudaibergenova B.M., Kim A.I. 1994. A not spot for MDG4 retrotransposon insertion into the forked locus and its precise excision. Dokl. Akad. Nauk.335 (5), 656‒658.

    CAS  PubMed  Google Scholar 

  16. Mével-Ninio M., Mariol M.C., Gans M. 1989. Mobilization of the gypsy and copia retrotransposons in Drosophila melanogaster induces reversion of the ovo dominant female-sterile mutations: Molecular analysis of revertant alleles. EMBO J.8 (5), 1549–1558.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dej K.J., Gerasimova T., Corces V.G., Boeke J.D. 1998. A hotspot for the Drosophila gypsy retroelement in the ovo locus. Nucleic Acids Res. 26 (17), 4019–4025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krstic D., Boll W., Noll M. 2013. Influence of the White locus on the courtship behavior of Drosophila males. PLoS One. 8 (10), e77904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Czech B., Preall J.B., McGinn J., Hannon G.J. 2013. A transcriptome-wide RNA screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol Cell., 50 (5), 749–761.

  20. Tootle T.L., Williams D., Hubb A., Frederick R., Spradling A. 2011. Drosophila eggshell production: Identification of new genes and coordination by Pxt. PLoS One. 6 (5), e19943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fakhouri M., Elalayli M., Sherling D., Hall J.D., Mil-ler E., Sun X., Wells L., LeMosy E.K. 2006. Minor proteins and enzymes of the Drosophila eggshell matrix. Dev. Biol. 293 (1), 127–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fujikawa K., Takahashi A., Nishimura A., Itoh M., Takano-Shimizu T., Ozaki M. 2009. Characteristics of genes up-regulated and down-regulated after 24 h starvation in the head of Drosophila.Gene. 446 (1), 11–17.

    Article  CAS  PubMed  Google Scholar 

  23. Landis G., Shen J., Tower J. 2012. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster.Aging (Albany, NY). 4 (11), 768–789.

    Article  CAS  Google Scholar 

  24. Buch S., Melcher C., Bauer M., Katzenberger J., Pankratz M.J. 2008. Opposing effects of dietary protein and sugar regulate a transcriptional target of Drosophila insulin-like peptide signaling. Cell Metab. 7 (4), 321–332.

    Article  CAS  PubMed  Google Scholar 

  25. Grönke S., Mildner A., Fellert S., Tennagels N., Petry S., Müller G., Jäckle H., Kühnlein R.P. 2005. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila.Cell Metab. 1 (5), 323–330.

    Article  PubMed  CAS  Google Scholar 

  26. Walker M.J., Rylett C.M., Keen J.N., Audsley N., Sajid M., Shirras A.D., Isaac R.E. 2006. Proteomic identification of Drosophila melanogaster male accessory gland proteins, including a pro-cathepsin and a soluble gamma-glutamyl transpeptidase. Proteome Sci. 4, 9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Liu J., Gong Z., Liu L. 2014. γ-Glutamyl transpeptidase 1 specifically suppresses green-light avoidance via GABAA receptors in Drosophila.J. Neurochem. 130 (3), 408–418.

    Article  CAS  PubMed  Google Scholar 

  28. Gruenewald C., Botella J.A., Bayersdorfer F., Navarro J.A., Schneuwly S. 2009. Hyperoxia-induced neurodegeneration as a tool to identify neuroprotective genes in Drosophila melanogaster.Free Radic. Biol. Med. 46 (12), 1668–1676.

    Article  CAS  PubMed  Google Scholar 

  29. Icreverzi A., de la Cruz A.F., Walker D.W., Edgar B.A. 2015. Changes in neuronal CycD/Cdk4 activity affect aging, neurodegeneration, and oxidative stress. Aging Cell. 14 (5), 896–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim A.I., Belyaeva E.S. 1986. Transpositions of mdg4 (gypsy) at the background of invariant localization of other mobile elements in mutator strain of Drosophila melanogaster characterised by genetic instability. Dokl. Akad. Nauk SSSR.289 (5), 1248–1252.

    CAS  PubMed  Google Scholar 

  31. Koch E.A., Smiht P.A., King R.S. 1967. The division and differentiation of Drosophila cystocytes. J. Morphol. 121, 55–70.

    Article  CAS  PubMed  Google Scholar 

  32. Ogienko A.A., Fedorova S.A., Baricheva E.M. 2007. Basic aspects of ovarian development in Drosophila melanogaster.Russ. J. Genet.43 (10), 1120–1134.

    Article  CAS  Google Scholar 

  33. Gutzeit H.O. 1986. The role of microfilaments in cytoplasmic streaming in Drosophila follicles. J. Cell Sci. 80, 159–169.

    CAS  PubMed  Google Scholar 

  34. Lopez de Heredia M., Jansen R.P. 2004. mRNA localization and the cytoskeleton. Curr. Opin. Cell Biol.16 (1), 80–85.

    Article  PubMed  CAS  Google Scholar 

  35. Kloc M., Bilinski S., Dougherty M.T., Brey E.M., Etkin L.D. 2004. Formation, architecture and polarity of female germline cystin Xenopus.Dev. Biol. 266 (1), 43–61.

    Article  CAS  PubMed  Google Scholar 

  36. Claycomb J.M., Orr-Weaver T.L. 2005. Developmental gene amplification: Insights into DNA replication and gene expression. Trends Genet. 21 (3), 149–162.

    Article  CAS  PubMed  Google Scholar 

  37. Klusza S., Deng W.M. 2011. At the crossroads of differentiation and proliferation: precise control of cell-cycle changes by multiple signaling pathways in Drosophila follicle cells. Bioessays. 33 (2), 124–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hoover K.K., Chien A.J., Corces V.G. 1993. Effects of transposable elements on the expression of the forked gene of Drosophila melanogaster.Genetics. 135 (2), 507–526.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Guida V., Cernilogar F.M., Filograna A., De Gregorio R., Ishizu H., Siomi M.C., Schotta G., Bellenchi G.C., Andrenacci D. 2016. Production of small noncoding RNAs from the flamenco locus is regulated by the gypsy retrotransposon of Drosophila melanogaster.Genetics. 204 (2), 631–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Santos C.G., Humann F.C., Hartfelder K. 2019. Juvenile hormone signaling in insect oogenesis. Curr. Opin. Insect. Sci. 31, 43–48.

    Article  PubMed  Google Scholar 

  41. Carney G.E., Bender M. 2000. The Drosophila ecdysone receptor (EcR) gene is required maternally for normal oogenesis. Genetics. 154 (3), 1203–1211.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gaziova I., Bonnette P.C., Henrich V.C., Jindra M. 2004. Cell-autonomous roles of the ecdysoneless gene in Drosophila development and oogenesis. Development. 131 (11), 2715–2725.

    Article  CAS  PubMed  Google Scholar 

  43. Armstrong A.R. 2019. Drosophila melanogaster as a model for nutrient regulation of ovarian function. Reproduction. pii: REP-18-0593.R3. https://doi.org/10.1530/REP-18-0593

  44. Das D., Arur S. 2017. Conserved insulin signaling in the regulation of oocyte growth, development, and maturation. Mol. Reprod. Dev. 84 (6), 444–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sieber M.H., Thomsen M.B., Spradling A.C. 2016. Electron transport chain remodeling by GSK3 during oogenesis connects nutrient state to reproduction. Cell.164 (3), 420–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Buch S., Melcher C., Bauer M., Katzenberger J., Pankratz M.J. 2008. Opposing effects of dietary protein and sugar regulate a transcriptional target of Drosophila insulin-like peptide signaling. Cell Metab. 7 (4), 321–332.

    Article  CAS  PubMed  Google Scholar 

  47. Sun J., Liu C., Bai X., Li X., Li J., Zhang Z., Zhang Y., Guo J., Li Y. 2017. Drosophila FIT is a protein-specific satiety hormone essential for feeding control. Nat. Commun.8, 14161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim A., Terzian C., Santamaria P., Pélisson A., Purd’homme N., Bucheton A. 1994. Retroviruses in invertebrates: The gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster.Proc. Natl. Acad. Sci. U. S. A.91 (4), 1285–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sarot E., Payen-Groschкne G., Bucheton A., Pélisson A. 2004. Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics. 166 (3), 1313–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kidwell M.G. 1985. Hybrid dysgenesis in Drosophila melanogaster: Nature and inheritance of P element regulation. Genetics. 111, 337–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Duc C., Yoth M., Jensen S., Mouniée N., Bergman C.M., Vaury C., Brasset E. 2019. Trapping a somatic endogenous retrovirus into a germline piRNA cluster immunizes the germline against further invasion. Genome Biol. 20 (1), 127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Engels W.R., Preston C.R. 1984. Formation of chromosome rearrangements by P factors in Drosophila.Genetics. 107 (4), 657–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sved J.A., Eggleston W.B., Engels W.R. 1990. Germ-line and somatic recombination induced by in vitro modified P elements in Drosophila melanogaster.Genetics. 124 (2), 331–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Srivastav S.P., Kelleher E.S. 2017. Paternal induction of hybrid dysgenesis in Drosophila melanogaster is weakly correlated with both P-element and hobo element dosage. G3 (Bethesda). 7 (5), 1487–1497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to Yu. E. Vorontsova (Koltsov Institute of Developmental Biology of the Russian Academy of Sciences) for assistance in conducting immunohistochemical staining experiments.

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 17-04-01250 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kim.

Ethics declarations

The authors declare no conflict of interest.

The article does not contain any research using animals as objects.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukushkina, I.V., Makhnovskii, P.A., Nefedova, L.N. et al. A Study of the Fertility of a Drosophila melanogaster MS Strain with Impaired Transposition Control of the gypsy Mobile Element. Mol Biol 54, 361–373 (2020). https://doi.org/10.1134/S0026893320030097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320030097

Keywords:

Navigation