Skip to main content
Log in

Pseudo-Noise Code Shifting Signal for AI Arranged UAV Networking

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Communication problems standout as the key issue needing to be addressed in Unmanned Aerial Vehicle (UAV) applications. Nowadays, the application of Artificial Intelligence (AI) technology provides a more flexible and effective organizing strategy for the UAV formation, but it also brings the challenges of transmission speed and access speed for the UAV networking technology.This highlights the importance of multi-access technology in UAV communication. Code Division Multiple Access (CDMA) is a suitable multi-access technology for UAV networking, but low spectrum utilization limits its application. In this study, we use a Pseudo-Noise (PN) code shifting modulation method to improve the spectrum utilization of CDMA signals, which makes it more suitable for UAV communication applications. Theoretical analysis and simulations show that the PN code shifting modulation strategy can effectively improve the information transmission rate of the system without affecting the processing gain and its multi-access capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Giordan D, Hayakawa Y, Nex F, Remondino F, Tarolli P (2008) The Use of Remotely Piloted Aircraft Systems (RPASs) for Natural Hazards Monitoring and Management. Natural Hazards Earth Syst Sci 18 (4):1079–1096

    Google Scholar 

  2. Chen JN, Xie JF, Gu YX, Li SW, Fu SL, Wan Y, Lu KJ (2017) Long-Range And broadband aerial communication using directional antennas (ACDA): Design and implementation. IEEE Trans Veh Technol 66 (12):10793–10805

    Google Scholar 

  3. Zhang Y, Li YJ, He Y, Liu F, Cen HY, Fang H (2018) Near ground platform development to simulate UAV aerial spraying and its spraying test under different conditions. Comput Electron Agric 148:8–18

    Google Scholar 

  4. Hadiwardoyo SA, Hernandez-Orallo E, Calafate CT, Cano JC, Manzoni P (2018) Experimental characterization of UAV-to-car communications. Comput Netw 136:105–118

    Google Scholar 

  5. Liu JJ, Wang WP, Li X, Wang T, Wang T (2018) A motif-based mission planning method for uav swarms considering dynamic reconfiguration. Def Sci J 68(2):159–166

    Google Scholar 

  6. Li C, Xu Y, Xia J, Zhao J (2019) Protecting secure communication under UAV smart attack with imperfect channel estimation. IEEE Access 6:76395–76401

    Google Scholar 

  7. Tang FX, Fadlullah ZM, Kato N, Ono F, Miura R (2018) AC-POCA: Anticoordination Game Based Partially Overlapping Channels Assignment In Combined UAV and D2D-Based Networks. IEEE Trans Veh Technol 67(2):1672–1683

    Google Scholar 

  8. Zhao N, Cheng F, Yu FR, Tang J, Chen Y, Gui G, Sari H (2018) Caching UAV assisted secure transmission in Hyper-Dense networks based on interference alignment. IEEE Trans Commun 66(5):2281–2294

    Google Scholar 

  9. Rupasinghe N, Yapici Y, Guvenc I, Ghosh M, Kakishima Y (2019) Angle Feedback for NOMA Transmission in mmWave Drone Networks. IEEE J Selec Topics Signal Proces Early Access 1–1

  10. Liu X, Wang J, Zhao N, Chen Y, Zhang S, Ding Z, Yu FR (2019) Placement and power allocation for NOMA-UAV networks. IEEE Wireless Commun Lett Early Access 1–1

  11. Fu Z, Chen Y, Ding Y, He D (2019) Pollution Source Localization based on multi-UAV cooperative communication. IEEE Access Early Access 1–1

  12. Fu Z, Mao Y, He D, Yu J, Xie G (2019) Secure multi-UAV Collaborative Task Allocation. IEEE Access Early Access 1–1

  13. Chandhar P, Danev D, Larsson EG (2018) Massive MIMO for communications with drone swarms. IEEE Trans Wirel Commun 17(3):1604–1629

    Google Scholar 

  14. Jeong S, Simeone O, Kang J (2018) Mobile Edge Computing via a UAV-mounted cloudlet: Optimization of Bit Allocation and Path Planning. IEEE Trans Veh Technol 67(3):2049–2063

    Google Scholar 

  15. Ladosz P, Oh H, Zheng G, Chen WH (2019) A Hybrid Approach of Learning and Model-Based Channel Prediction for Communication Relay UAVs in Dynamic Urban Environments, IEEE Robotics and Automation Letters Early Access 1–1

  16. Sun X, Yang W, Cai Y, Ma R, Tao L (2019) Physical Layer Security in Millimeter Wave SWIPT UAV-based Relay Networks. IEEE Access Early Access 1–1

  17. Han S, Zhang Y, Meng W, Li C, Zhang Z (2019) Full-Duplex Relay-Assisted Macrocell with millimeter wave backhauls: framework and prospects. IEEE Netw 33(5):190–197

    Google Scholar 

  18. Zeng Y, Xu XL, Zhang R (2018) Trajectory Design for Completion Time Minimization in UAV-enabled Multicasting. IEEE Trans Wirel Commun 17(4):2233–2246

    Google Scholar 

  19. Wu QQ, Zeng Y, Zhang R (2018) Joint Trajectory and Communication Design for multi-UAV Enabled Wireless Networks. IEEE Trans Wirel Commun 17(3):2109–2121

    Google Scholar 

  20. Rahman SU, Cho YZ (2018) UAV Positioning for throughput maximization. Eurasip J Wirel Commun Netw 2018(1):105–118

    Google Scholar 

  21. Han S, Lei C, Meng WX, Li C (2017) Improve the security of GNSS receivers through spoofing mitigation. IEEE Access 5(1):21057–21069

    Google Scholar 

  22. Han S, Gong ZJ, Meng WX, Li C, Gu XM (2016) Future alternative positioning, navigation and timing techniques, a survey. IEEE Wirel Commun Mag 23(6):154–160

    Google Scholar 

  23. Han S, Luo D, Meng WX, Li C (2016) Antispoofing RAIM for dual recursion particle filter of GNSS calculation. IEEE Trans Aerosp Electron Syst 52(2):836–851

    Google Scholar 

  24. Han S, Xu S, Meng WX, Li C (2018) Dense-Device-Enabled Cooperative networks for efficient and secure transmission. IEEE Netw 32(2):100–106

    Google Scholar 

  25. Han S, Zhang Y, Meng WX, Chen HH (2018) Self-Interference-Cancelation-Based SLNR Precoding design for Full-Duplex Relay-Assisted system. IEEE Trans Veh Technol 67(9):8249–8262

    Google Scholar 

  26. Bahloul NE, Boudjit S, Abdennebi M, Boubiche DE (2018) A Flocking-Based on demand routing protocol for unmanned aerial vehicles. J Comput Sci Technol 33(2):263–276

    Google Scholar 

  27. Joo C, Choi J (2018) Low-Delay Broadband satellite communications with High-Altitude unmanned aerial vehicles. J Commun Netw 20(1):102–108

    Google Scholar 

  28. Xiao L, Lu XZ, Xu DJ, Tang YL, Wang L, Zhuang WH (2018) UAV Relay In VANETs Against Smart Jamming With Reinforcement Learning. IEEE Trans Veh Technol 67(5):4087–4097

    Google Scholar 

  29. Fan L, Zhao N, Lei X, Chen Q, Yang N, Karagiannidis GK (2019) Outage Probability and Optimal Cache Placement for Multiple Amplify-and-Forward Relay Networks. IEEE Trans Veh Technol 67(12):12373–12378

    Google Scholar 

  30. Chen Y, Feng W, Zheng G (2018) Optimum placement of UAV as relays. IEEE Commun Lett 22 (2):248–251

    Google Scholar 

  31. Du W, Ying W, Yang P, Cao X, Yan G, Tang K, Wu D (2019) Network-Based Heterogeneous particle swarm optimization and its application in UAV communication coverage, IEEE tansactions on emerging topics in computational intelligence Early Access 1–12

  32. Fan RF, Cui JN, Jin S, Yang K, An JP (2018) Optimal node placement and resource allocation for UAV relaying network. IEEE Commun Lett 22(4):808–811

    Google Scholar 

  33. Cheng F, Zhang S, Li Z, Chen Y, Zhao N, Yu FR, Leung VCM (2018) UAV Trajectory optimization for data offloading at the edge of multiple cells. IEEE Trans Veh Technol 67(7):6732–6736

    Google Scholar 

  34. Chen Y, Zhao N, Ding Z, Alouini M (2018) Multiple UAVs as relays: Multi-hop Single Link versus Multiple Dual-hop Links. IEEE Trans Wirel Commun 17(9):6348–6359

    Google Scholar 

  35. Deruyck M, Wyckmans J, Joseph W, Martens L (2018) Designing UAV-aided Emergency Networks for Large-scale Disaster Scenarios. IEURASIP J Wirel Commun Netw 4:102–108

    Google Scholar 

  36. Zhao JW, Jia WM (2018) Channel Transmission Strategy for mmWave Hybrid UAV Communications with Blockage. Electron Lett 54(2):248–251

    MathSciNet  Google Scholar 

  37. Sohail MF, Leow CY, Won S (2018) Non-Orthogonal Multiple access for unmanned aerial vehicle assisted communication. IEEE Access 6:22716–22727

    Google Scholar 

  38. Azari MM, Rosas F, Chen KC, Pollin S (2018) Ultra reliable UAV communication using altitude and cooperation diversity. IEEE Trans Commun 66(1):330–344

    Google Scholar 

  39. Han S, Huang YT, Meng WX, Li C, Xu N, Chen DG (2018) Optimal Power Allocation for SCMA Downlink Systems Based on Maximum Capacity. IEEE Transactions on Communications 67(2):1480–1489

    Google Scholar 

  40. Mozaffari M, Saad W, Bennis M, Debbah M (2017) Wireless Communication Using Unmanned Aerial Vehicles (UAVs): Optimal Transport Theory for Hover Time Optimization. IEEE Trans Wirel Commun 16 (12):8052–8066

    Google Scholar 

  41. Thammawichai M, Baliyarasimhuni SP, Kerrigan EC, Sousa JB (2018) Optimizing Communication and Computation for multi-UAV Information Gathering Applications. IEEE Trans Aerosp Electron Syst 54(2):601–615

    Google Scholar 

  42. Ramdhan N, Sliti M, Boudriga N (2018) A Tree-based Data Collection Protocol for Optical Unmanned Aerial Vehicle Networks. Comput Elect Eng 66:80–97

    Google Scholar 

  43. Zheng ZG, Sangaiah AK, Wang T (2018) Adaptive communication protocols in flying ad hoc network. IEEE Commun Mag 56(1):136–142

    Google Scholar 

  44. Zhao JW, Gao FF, Wu QH, Jin S, Wu Y, Jia WM (2018) Beam Tracking for UAV Mounted SatCom on-the-Move With Massive Antenna Array. IEEE J Selec Areas Commun 36(2):363–375

    Google Scholar 

  45. Mustaqim M, Khawaja BA, Razzaqi AA, Zaidi SSH, Jawed SA, Qazi SH (2018) Wideband and High Gain Antenna Arrays for UAV-to-UAV and UAV-to-ground Communication in Flying Ad-hoc Networks (FANETs). Microw Opt Technol Lett 60(5):1164–1170

    Google Scholar 

  46. Tan W, Matthaiou M, Jin S, Li X (2017) Spectral efficiency of DFT based processing hybrid architectures in massive MIMO. IEEE Wirel CommunLett 6(5):586–589

    Google Scholar 

  47. Zhou G (2019) Energy efficiency beamforming design for UAV communications with broadband hybrid polarization antenna arrays. IEEE access Early Access 1–1

  48. Tan W, Xie D, Xia J (2018) Spectral and energy efficiency of massive MIMO for hybrid architectures based on phase shifters. IEEE Access 6:11751–11759

    Google Scholar 

  49. Nguyen HC, Amorim R, Wigard J, Kovacs IZ, Sorensen TB, Mogensen PE (2018) How to ensure reliable connectivity for aerial vehicles over cellular networks. IEEE Access 6:12304–12317

    Google Scholar 

  50. Lin XQ, Yajnarayana V, Muruganathan SD, Gao SW, Asplund H, Maattanen HL, Bergstrom M, Euler S, Wang YPE (2018) The sky is not the limit: LTE for unmanned aerial vehicles. IEEE Commun Magaz 56(4):204–210

    Google Scholar 

  51. He HY, Zhang SW, Zeng Y, Zhang R (2018) Joint Altitude and Beamwidth Optimization for UAV-enabled Multiuser Communications. IEEE Commun Lett 22(2):344–347

    Google Scholar 

  52. Anwar M, Xia Y, Zhan Y (2016) TDMA-Based IEEE 802.15.4 for Low-Latency Deterministic Control Applications. IEEE Trans Ibdustrial Inform 2(1):338–347

    Google Scholar 

  53. Sinanovic D, Sisul G, Modlic B (2017) Low-PAPR Spatial Modulation for SC-FDMA. IEEE Trans Veh Technol 66(1):443–454

    Google Scholar 

  54. Li M, Ti G, Tian X, Liu Q (2017) Qos-based Binary Signature Design for Secure CDMA Systems. IEEE Trans Veh Technol 99:1–1

    Google Scholar 

  55. Xue Z, Wang JL, Shi QJ, Ding GR, Wu QH (2018) Time-Frequency Scheduling and power optimization for reliable multiple UAV communications. IEEE Access 6:3992–4005

    Google Scholar 

  56. Khuwaja AA, Chen Y, Zhao N, Alouini M (2018) A survey of channel modeling for UAV communications. IEEE Commun Surv Tutor 20(4):2804–2821

    Google Scholar 

  57. Meng WX, Sun SY, Chen HH, Li JQ (2013) Multi-User Interference cancellation in complementary coded CDMA with diversity gain. IEEE Wirel Commun Lett 2(3):303–306

    Google Scholar 

  58. Torrieri D (2018) Principles of Spread-Spectrum Communication Systems. Springer, New York, pp 248–367

    Google Scholar 

  59. Daniele B, Pratibha AB, Grard L (2011) SATLSIm: A Semi-Analytic Framework for Fast GNSS Tracking Loop Simulations. GPS Solutions 15(4):427–431

    Google Scholar 

  60. Hao YL, Deng ZX (2010) A gold code factor graph iterative acquisition method. J Beijng Univer Posts Telecommun 33(1):38–42

    Google Scholar 

  61. Hiromi I, Hiroyuki H, Masahiro F, Atsushi I, Yu W (2018) Reliable Position Estimation by Parallelized Processing in Kinematic Positioning for Single Frequency GNSS Receiver. leice Trans Fundamen Electron , Commun Comput Sci E101A(7):1083–1091

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China #61701072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyue Zou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, D., Liu, J., Cheng, X. et al. Pseudo-Noise Code Shifting Signal for AI Arranged UAV Networking. Mobile Netw Appl 25, 1683–1693 (2020). https://doi.org/10.1007/s11036-020-01578-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-020-01578-4

Keywords

Navigation