Skip to main content
Log in

Constitutive Analysis of the Mean Flow Stress of a Nb- and N-Bearing Austenitic Stainless Steel Biomaterial

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The correlation between hardening and softening in an ASTM F-1586 stainless steel used as biomaterial was investigated by means of hot torsion simulations. Multi-pass deformation under continuous cooling was employed to simulate industrial hot rolling. Samples were subjected to 17 deformation passes of strains of 0.20 and 0.30, strain rate of 1.0 s−1 in a temperature range of 1250 to 930 °C. Interpass times (tp) of 5.0, 10, 20, 40, and 80 s were used. The obtained results showed direct dependence of the mean flow stress (MFS) and all applied thermomechanical parameters. The work hardening rate associated with the degree of stress accumulation (Δσ) inhibited the metadynamic recrystallization. This led to the variation of the non-recrystallization temperature (Tnr), associated with intense static recovery in the material. From the experimental data, a constitutive function of the mean flow stress (MFS) obtained through multiple nonlinear regression technique was proposed. The study aimed to have a better understanding of the physical metallurgy behind the thermomechanical behavior of the steel under a multi-pass process. The results allowed to monitor the recrystallized fraction (X) and the grain size (d) during the simulated conditions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.L. Hench, J.M. Polak, Third-generation biomedical materials. Science 295, 1014–1017 (2002). https://doi.org/10.1126/science.1067404

    Article  CAS  Google Scholar 

  2. E.J. Giordani, A.M. Jorge Jr., O. Balancin, Evidence of strain-induced precipitation on a Nb and N-bearing austenitic stainless steel biomaterial. Mater. Sci. For. 500, 179–186 (2005). https://doi.org/10.4028/www.scientific.net/MSF.500-501.179

    Article  Google Scholar 

  3. E.J. Giordani, V.A. Guimarães, T.B. Pinto, I. Ferreira, Effect of precipitates on the corrosion–fatigue crack initiation of ISO 5832-9 stainless steel biomaterial. Int. J. Fatigue 26, 1129–1136 (2004). https://doi.org/10.1016/j.ijfatigue.2004.03.002

    Article  CAS  Google Scholar 

  4. C. Örnhagen, J.O. Nilsson, H. Vannevik, Characterization of a nitrogen-rich austenitic stainless steel used for osteosynthesis devices. J. Biol. Mater. Res. 31, 97–103 (1996). https://doi.org/10.1002/(SICI)1097-4636(199605)31:1%3c97:AID-JBM12%3e3.0.CO;2-J

    Article  Google Scholar 

  5. M. Navarro, A. Michiardi, O. Castaño, J.A. Planell, Biomaterials in orthopaedics. J. R. Soc. Interface 5(27), 1137–1158 (2008). https://doi.org/10.1098/rsif.2008.0151

    Article  CAS  Google Scholar 

  6. International Organization for Standardization, Switzerland, 5832-9; Implants for surgery—Metallic materials—Part 9: Wrought high nitrogen stainless steel. Switzerland (1997)

  7. F.R. Bernardes, S.F. Rodrigues, E.S. Silva, G.S. Reis, M.B.R. Silva, A.M. Moreira Jr., O. Balancin, Analytical modeling of the thermomechanical behavior of ASTM F-1586 high nitrogen austenitic stainless steel used as a biomaterial under multipass deformation. Mater. Sci. Eng. C Mater. Biol. Appl. 51, 87–98 (2015). https://doi.org/10.1016/j.msec.2015.02.040

    Article  CAS  Google Scholar 

  8. M.B.R. Silva, J. Galleno, J.M. Cabrera, O. Balancin, A.M. Moreira Jr., Interaction between recrystallization and strain-induced precipitation in a high Nb- and N-bearing austenitic stainless steel: influence of the interpass time. Mater. Sci. Eng., A 637, 189–200 (2015). https://doi.org/10.1016/j.msea.2015.04.049

    Article  CAS  Google Scholar 

  9. ASTM_International. Standard ASTM F-1586, Specification for Wrought Nitrogen Strengthened 21Chromium–10Nickel–3Manganese–2.5Molybdenum Stainless Steel Alloy Bar for Surgical Implants (UNS S31675) (2013)

  10. A.J. DeArdo, Modern thermomechanical processing of microalloyed steel: a physical metallurgy perspective. In: Proceedings of International Conference on Microalloying’95, Pittsburgh, PA, pp 15–33 (1995)

  11. B. Dutta, E.J. Palmiere, C.M. Sellars, Modelling the kinetics of strain induced precipitation in Nb microalloyed steels. Acta Mater. 49(5), 785–794 (2001). https://doi.org/10.1016/S1359-6454(00)00389-X

    Article  CAS  Google Scholar 

  12. D. Samantaray, S. Mandal, M. Jayalakshmi, C.N. Athreya, A.K. Bhaduri, V.S. Sarma, New insights into the relationship between dynamic softening phenomena and efficiency of hot working domains of a nitrogen enhanced 316L (N) stainless steel. Mater. Sci. Eng., A 598, 368–375 (2014). https://doi.org/10.1016/j.msea.2013.12.105

    Article  CAS  Google Scholar 

  13. S.F. Medina, The influence of niobium on the static recrystallization of hot deformed austenite and on strain induced precipitation kinetics. Scr. Met. Mater. 32(1), 43–48 (1995). https://doi.org/10.1016/S0956-716X(99)80009-0

    Article  CAS  Google Scholar 

  14. F. Boratto, S. Yue, J.J. Jonas, T.H. Lawrence, Design of schedules for the production of high strength microalloyed steel strip in a hot steckel mill. I. Tamura (Ed.), Proceedings of International Conference on Physics Metallurgy of Thermomechanical Processing of Steels and other Metals (Thermec-88), Iron and Steel Institute of Japan, Tokyo (Japan), pp 519–526 (1988)

  15. T.M. Maccagno, J.J. Jonas, Correcting for the effects of static and metadynamic recrystallization during the laboratory simulation of rod rolling. ISIJ Int. 34, 607–614 (1994). https://doi.org/10.2355/isijinternational.34.607

    Article  CAS  Google Scholar 

  16. A. Laasraoui, J.J. Jonas, Prediction of temperature distribution, flow stress and microstructure during the multipass hot rolling of steel plate and strip. ISIJ Int. 31, 95–105 (1991). https://doi.org/10.2355/isijinternational.31.95

    Article  Google Scholar 

  17. F. Boratto, R. Barbosa, S. Yue, J.J. Jonas, Effect of chemical composition on the critical temperatures of microalloyed steels. In: Tamura (Ed.), Proceedings of International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals (Thermec-88), Iron and Steel Institute of Japan, Tokyo (Japan): 383–390 (1988)

  18. D.Q. Bai, S. Yue, W.P. Sun, J.J. Jonas, Effect of deformation parameters on the No-recrystallization temperature in Nb-bearing steels. Met. Trans. A 24, 2151–2159 (1993). https://doi.org/10.1007/BF02648589

    Article  Google Scholar 

  19. M. Gomes, L. Rancel, B.J. Fernandez, S.F. Medina, Evolution of austenite static recrystallization and grain size during hot rolling of a V-microalloyed steel. Mater. Sci. Eng., A 501, 188–196 (2009). https://doi.org/10.1016/j.msea.2008.09.074

    Article  CAS  Google Scholar 

  20. M. Arribas, B. Lopes, J.M. Rodriguez-Ibabe, Additional grain refinement in recrystallization controlled rolling of Ti-microalloyed steels processed by near-net-shape casting technology. Mater. Sci. Eng., A 485, 383–394 (2008). https://doi.org/10.1016/j.msea.2007.08.015

    Article  CAS  Google Scholar 

  21. N. Radović, D. Drobnjak, K. Raić, Determination of activation energy for static recrustallization using multipass continuous cooling torsion test. Ass. Met. Eng. Ser. AMES 15(2), 99–104 (2009)

    Google Scholar 

  22. E.S. Silva, R.C. Sousa, A.M. Jorge Jr., O. Balancin, Hot deformation behavior of an Nb- and N-bearing austenitic stainless steel biomaterial. Mater. Sci. Eng., A 543, 69–75 (2012). https://doi.org/10.1016/j.msea.2012.02.048

    Article  CAS  Google Scholar 

  23. L. Rauch, R. Jacolot, K. Bzowski, M. Pietrzyk, Physical and numerical simulation of the multipass AHSS strip rolling, cooling and coiling. Proc. Manuf. 27, 118–123 (2019). https://doi.org/10.1016/j.promfg.2018.12.053

    Article  Google Scholar 

  24. M.I. Vega, S.F. Medina, A. Quispe, M. Gomez, P.P. Gomez, Influence of TiN particle precipitation state on static recrystallisation in structural steels. ISIJ Int. 45(2005), 1878–1886 (2005). https://doi.org/10.2355/isijinternational.45.1878

    Article  CAS  Google Scholar 

  25. F. Siciliano, K. Minami, T.M. Maccagno, J.J. Jonas, Mathematical modeling of the mean flow stress, fractional softening and grain size during the hot strip rolling of C–Mn steels. ISIJ Int. 36, 1500–1506 (1996). https://doi.org/10.2355/isijinternational.36.1500

    Article  CAS  Google Scholar 

  26. M.B.R. Silva, J.M. Cabrera, O. Balancin, A.M. Moreira Jr., Thermomechanical controlled processing to achieve very fine grains in the ISO 5832-9 austenitic stainless steel biomaterial. Mater. Charact. 127, 153–160 (2017). https://doi.org/10.1016/j.matchar.2017.02.026

    Article  CAS  Google Scholar 

  27. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater Sci. 60, 130–207 (2014). https://doi.org/10.1016/j.pmatsci.2013.09.002

    Article  CAS  Google Scholar 

  28. M.C. Mataya, C.A. Perkins, S.W. Thompson, D.K. Matlock, Flow stress and microstructural evolution during hot working of alloy 22Cr–13 Ni–5Mn–0.3N austenitic stainless steel. Met. Mater. Trans. A 27, 1251–1266 (1996). https://doi.org/10.1007/BF02649862

    Article  Google Scholar 

  29. E.J. Giordani, A.M. Jorge Jr., O. Balancin, Proportion of recovery and recrystallization during interpass times at high temperatures on a Nb- and N-bearing austenitic stainless steel biomaterial. Scr. Mater. 55, 743–746 (2006). https://doi.org/10.1016/j.scriptamat.2006.05.015

    Article  CAS  Google Scholar 

  30. X. Liu, J.K. Solberg, R. Gjengedal, A.O. Kluken, Modelling of interaction between recrystallisation and precipitation during multipass rolling of niobium microalloyedsteels. Mater. Sci. Technol. 5, 469–473 (1995). https://doi.org/10.1179/mst.1995.11.5.469

    Article  Google Scholar 

  31. S.H. Mousavi Anijdan, S. Yue, The necessity of dynamic precipitation for the occurrence of no-recrystallization temperature in Nb-microalloyed steel. Mater. Sci. Eng., A 528, 803–807 (2011). https://doi.org/10.1016/j.msea.2010.09.101

    Article  CAS  Google Scholar 

  32. J. Erneman, M. Schwind, P. Liu, J.O. Nilsson, H.O. Andren, J. Agren, Precipitation reactions caused by nitrogen uptake during service at high temperatures of a niobium stabilised austenitic stainless steel. Acta Mater. 52, 4337–4350 (2004). https://doi.org/10.1016/j.actamat.2004.06.001

    Article  CAS  Google Scholar 

  33. Y. Cheng, H. Du, Y. Wei, L. Hou, B. Liu, Metadynamic recrystallization behavior and workability characteristics of HR3C austenitic heat-resistant stainless steel with processing map. J. Mater. Process. Technol. 235, 134–142 (2016). https://doi.org/10.1016/j.jmatprotec.2016.04.026

    Article  CAS  Google Scholar 

  34. A. Paggi, G. Angella, R. Donnini, Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization. Mater. Charact. 107, 174–181 (2015). https://doi.org/10.1016/j.matchar.2015.07.003

    Article  CAS  Google Scholar 

  35. R.C. Souza, E.S. Silva, A.M. Jorge Jr., J.M. Cabrera, O. Balancin, Dynamic recovery and dynamic recrystallization competition on a Nb- and N-bearing austenitic stainless steel biomaterial: influence of strain rate and temperature. Mater. Sci. Eng., A 582, 96–107 (2013). https://doi.org/10.1016/j.msea.2013.06.037

    Article  CAS  Google Scholar 

  36. K. Huang, K. Marthinsen, Q. Zhao, R.E. Loge, The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials. Prog. Mater Sci. 92, 284–359 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.004

    Article  CAS  Google Scholar 

  37. S.R.J.B. Leitão Filho, E.S. Silva, S.F. Rodrigues, C. Aranas Jr., E.J.P. Miranda Jr., G.S. Reis, O. Balancin, Delay in the static softening kinetics of a Nb–N-bearing austenitic stainless steel. Mater. Res. Exp. 6(11), 65f3 (2019). https://doi.org/10.1088/2053-1591/ab3e27

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the technical collaboration of Prof. J.M. Cabrera from the Materials Research Group from Polytechnic University of Catalonia (UPC/Barcelona/ESP), financial support from the Research and Support Foundation of Maranhão (FAPEMA), CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Filgueiras Rodrigues.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Filho, N.L.C., Silva, E.S., Aranas, C. et al. Constitutive Analysis of the Mean Flow Stress of a Nb- and N-Bearing Austenitic Stainless Steel Biomaterial. Met. Mater. Int. 27, 4768–4779 (2021). https://doi.org/10.1007/s12540-020-00777-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00777-8

Keywords

Navigation