Skip to main content

Advertisement

Log in

Cholesterol metabolism in mice models of genetic hypercholesterolemia

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Monogenic familial hypercholesterolemia is characterized by impaired cellular uptake of apolipoprotein B containing lipoproteins. However, its consequences on whole-body cholesterol metabolism are unclear. We investigated cholesterol metabolism in wild-type mice (control) and in knockout (KO) mice for the low-density lipoprotein receptor (LDLR-KO) and for apolipoprotein E (apoE-KO) containing the genetic basis of the C57BL/6J mice, under a cholesterol-free diet. Cholesterol and “non-cholesterol” sterols (cholestanol, desmosterol, and lathosterol) were measured in plasma, tissues, as well as in feces as cholesterol and its bacterial modified products (neutral sterols) using gas chromatography/mass spectrometry, and bile acids were measured by an enzymatic method. Compared to controls, LDLR-KO mice have elevated plasma and whole-body cholesterol concentrations, but total fecal sterols are not modified, characterizing unaltered body cholesterol synthesis together with impaired body cholesterol excretion. ApoE-KO mice presented the highest concentrations of plasma cholesterol, whole-body cholesterol, cholestanol, total fecal sterols, and cholestanol, compatible with high cholesterol synthesis rate; the latter seems attributed to elevated body desmosterol (Bloch cholesterol synthesis pathway). Nonetheless, whole-body lathosterol (Kandutsch-Russel cholesterol synthesis pathway) decreased in both KO models, likely explaining the diminished fecal bile acids. We have demonstrated for the first time quantitative changes of cholesterol metabolism in experimental mouse models that explain differences between LDLR-KO and apoE-KO mice. These findings contribute to elucidate the metabolism of cholesterol in human hypercholesterolemia of genetic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Auger A, Truong TQ, Rhainds D, Lapointe J, Letarte F, Brissette L (2001) Low and high density lipoprotein metabolism in primary cultures of hepatic cells from normal and apolipoprotein E knockout mice. Eur J Biochem 268:2322–2330

    Article  CAS  Google Scholar 

  2. Baila-Rueda L, Pérez-Ruiz MR, Jarauta E, Tejedor MT, Mateo-Gallego R, Lamiquiz-Moneo I, de Castro-Orós I, Cenarro A, Civeira F (2016) Cosegregation of serum cholesterol with cholesterol intestinal absorption markers in families with primary hypercholesterolemia without mutations in LDLR, APOB, PCSK9 and APOE genes. Atherosclerosis. 246:202–207. https://doi.org/10.1016/j.atherosclerosis.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  3. Bhat tacharyya AK, Connor WE, Spector AA (1976) Abnormalities of cholesterol turnover in hypercholesterolemic (type II) patients. J Lab Clin Med 88:202–214

    CAS  PubMed  Google Scholar 

  4. Bilheimer DW, Goldstein JL, Grundy SM, Brown MS (1975) Reduction in cholesterol and low density lipoprotein synthesis after portacaval shunt surgery in a patient with homozygous familial hypercholesterolemia. J Clin Invest 56:1420–1430. https://doi.org/10.1172/JCI108223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bilheimer DW, Stone NJ, Grundy SM (1979) Metabolic studies in familial hypercholesterolemia. Evidence for a gene-dosage effect in vivo. The Journal of clinical investigation 64:524–533. https://doi.org/10.1172/JCI109490

    Article  CAS  PubMed  Google Scholar 

  6. Bjorkhem I, Meaney S (2004) Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 24:806–815. https://doi.org/10.1161/01.ATV.0000120374.59826.1b

    Article  CAS  PubMed  Google Scholar 

  7. Brown MS, Dana SE, Goldstein JL (1973) Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts by lipoproteins. Proc Natl Acad Sci U S A 70:2162–2166

    Article  CAS  Google Scholar 

  8. Buchmann MS, Bjorkhem I, Skrede S (1987) Metabolism of the cholestanol precursor cholesta-4,6-dien-3-one in different tissues. Biochim Biophys Acta 922:111–117

    Article  CAS  Google Scholar 

  9. Carter GA, Connor WE, Bhattacharyya AK, Lin DS (1979) The cholesterol turnover, synthesis, and absorption in two sisters with familial hypercholesterolemia (type IIa). J Lipid Res 20:66–77

    CAS  PubMed  Google Scholar 

  10. Dietschy JM, Turley SD (2002) Control of cholesterol turnover in the mouse. J Biol Chem 277:3801–3804

    Article  CAS  Google Scholar 

  11. Dietschy JM, Turley SD, Spady DK (1993) Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res 34:1637–1659

    CAS  PubMed  Google Scholar 

  12. Fantappie S, Catapano AL, Cancellieri M et al (1992) Plasma lipoproteins and cholesterol metabolism in Yoshida rats: an animal model of spontaneous hyperlipemia. Life Sci 50:1913–1924

    Article  CAS  Google Scholar 

  13. Farkkila MA, Kairemo KJ, Taavitsainen MJ et al (1996) Plasma lathosterol as a screening test for bile acid malabsorption due to ileal resection: correlation with 75SeHCAT test and faecal bile acid excretion. Clinical Science (London, England : 1979) 90:315–319

    Article  CAS  Google Scholar 

  14. Garcia-Otin AL, Cofan M, Junyent M et al (2007) Increased intestinal cholesterol absorption in autosomal dominant hypercholesterolemia and no mutations in the low-density lipoprotein receptor or apolipoprotein B genes. J Clin Endocrinol Metab 92:3667–3673. https://doi.org/10.1210/jc.2006-2567

    Article  CAS  PubMed  Google Scholar 

  15. Gardes C, Chaput E, Staempfli A et al (2013) Differential regulation of bile acid and cholesterol metabolism by the farnesoid X receptor in Ldlr -/- mice versus hamsters. J Lipid Res 54:1283–1299. https://doi.org/10.1194/jlr.M033423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goodman DS, Smith FR, Seplowitz AH, Ramakrishnan R, Dell RB (1980) Prediction of the parameters of whole body cholesterol metabolism in humans. J Lipid Res 21:699–713

    CAS  PubMed  Google Scholar 

  17. Gylling H, Miettinen TA (1989) Absorption and metabolism of cholesterol in familial hypercholesterolaemia. Clinical Science (London, England : 1979) 76:297–301

    Article  CAS  Google Scholar 

  18. He K, Wang J, Shi H, Yu Q, Zhang X, Guo M, Sun H, Lin X, Wu Y, Wang L, Wang Y, Xian X, Liu G (2019) An interspecies study of lipid profiles and atherosclerosis in familial hypercholesterolemia animal models with low-density lipoprotein receptor deficiency. Am J Transl Res 11:3116–3127

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hedman M, Miettinen TA, Gylling H, Ketomäki A, Antikainen M (2006) Serum noncholesterol sterols in children with heterozygous familial hypercholesterolemia undergoing pravastatin therapy. J Pediatr 148:241–246. https://doi.org/10.1016/j.jpeds.2005.08.068

    Article  CAS  PubMed  Google Scholar 

  20. Kempen HJ, Glatz JF, Gevers Leuven JA, van der Voort H, Katan MB (1988) Serum lathosterol concentration is an indicator of whole-body cholesterol synthesis in humans. J Lipid Res 29:1149–1155

    CAS  PubMed  Google Scholar 

  21. Kempen HJ, Gevers Leuven JA, van der Voort HA et al (1991) Lathosterol level in plasma is elevated in type III hyperlipoproteinemia, but not in non-type III subjects with apolipoprotein E2/2 phenotype, nor in type IIa or IIb hyperlipoproteinemia. Metab Clin Exp 40:231–235

    Article  CAS  Google Scholar 

  22. Ketomaki A, Gylling H, Siimes MA et al (2003) Squalene and noncholesterol sterols in serum and lipoproteins of children with and without familial hypercholesterolemia. Pediatr Res 53:648–653. https://doi.org/10.1203/01.PDR.0000055771.28409.40

    Article  PubMed  Google Scholar 

  23. Koivisto PV, Miettinen TA (1988) Evaluation of bile acid malabsorption by plasma cholesterol precursor sterols in familial hypercholesterolaemia patients with and without ileal exclusion. Scand J Clin Lab Invest 48:501–507

    Article  CAS  Google Scholar 

  24. Lin DS, Connor WE (1980) The long term effects of dietary cholesterol upon the plasma lipids, lipoproteins, cholesterol absorption, and the sterol balance in man: the demonstration of feedback inhibition of cholesterol biosynthesis and increased bile acid excretion. J Lipid Res 21:1042–1052

    CAS  PubMed  Google Scholar 

  25. Lupattelli G, Pirro M, Siepi D, Mannarino MR, Roscini AR, Vaudo G, Pasqualini L, Schillaci G, Mannarino E (2012) Non-cholesterol sterols in different forms of primary hyperlipemias. Nutr Metab Cardiovasc Dis 22:231–236. https://doi.org/10.1016/j.numecd.2010.05.010

    Article  CAS  PubMed  Google Scholar 

  26. McNamara DJ, Ahrens EHJ, Kolb R et al (1983) Treatment of familial hypercholesterolemia by portacaval anastomosis: effect on cholesterol metabolism and pool sizes. Proc Natl Acad Sci U S A 80:564–568

    Article  CAS  Google Scholar 

  27. Miettinen TA, Tilvis RS, Kesaniemi YA (1989) Serum cholestanol and plant sterol levels in relation to cholesterol metabolism in middle-aged men. Metab Clin Exp 38:136–140

    Article  CAS  Google Scholar 

  28. Miettinen TA, Gylling H, Tuominen J, Simonen P, Koivisto V (2004) Low synthesis and high absorption of cholesterol characterize type 1 diabetes. Diabetes Care 27:53–58. https://doi.org/10.2337/diacare.27.1.53

    Article  CAS  PubMed  Google Scholar 

  29. Moghadasian MH, Nguyen LB, Shefer S, Salen G, Batta AK, Frohlich JJ (2001) Hepatic cholesterol and bile acid synthesis, low-density lipoprotein receptor function, and plasma and fecal sterol levels in mice: effects of apolipoprotein E deficiency and probucol or phytosterol treatment. Metab Clin Exp 50:708–714. https://doi.org/10.1053/meta.2001.23303

    Article  CAS  PubMed  Google Scholar 

  30. Noto D, Cefalu AB, Barraco G et al (2010) Plasma non-cholesterol sterols: a useful diagnostic tool in pediatric hypercholesterolemia. Pediatr Res 67:200–204. https://doi.org/10.1203/PDR.0b013e3181c8f035

    Article  CAS  PubMed  Google Scholar 

  31. Nunes VS, Leança CC, Panzoldo NB, Parra E, Cazita PM, Nakandakare ER, de Faria EC, Quintão ECR (2011) HDL-C concentration is related to markers of absorption and of cholesterol synthesis: study in subjects with low vs. high HDL-C. Clinica Chimica Acta 412:412–180. https://doi.org/10.1016/j.cca.2010.09.039

    Article  CAS  Google Scholar 

  32. Nunes VS, Cazita PM, Catanozi S, Nakandakare ER, Quintão ECR (2018) Decreased content, rate of synthesis and export of cholesterol in the brain of apoE knockout mice. J Bioenerg Biomembr 50:283–287. https://doi.org/10.1007/s10863-018-9757-9

    Article  CAS  PubMed  Google Scholar 

  33. Osono Y, Woollett LA, Herz J, Dietschy JM (1995) Role of the low density lipoprotein receptor in the flux of cholesterol through the plasma and across the tissues of the mouse. J Clin Investig 95:1124–1132. https://doi.org/10.1172/JCI117760

    Article  CAS  PubMed  Google Scholar 

  34. Pereira NL, Sargent DJ, Farkouh ME, Rihal CS (2015) Genotype-based clinical trials in cardiovascular disease. Nat Rev Cardiol 12:475–487. https://doi.org/10.1038/nrcardio.2015.64

    Article  PubMed  PubMed Central  Google Scholar 

  35. Quintao E, Grundy SM, Ahrens EHJ (1971) Effects of dietary cholesterol on the regulation of total body cholesterol in man. J Lipid Res 12:233–247

    CAS  PubMed  Google Scholar 

  36. Samuel P, Perl W, Holtzman CM, Rochman ND, Lieberman S (1972) Long-term kinetics of serum and xanthoma cholesterol radioactivity in patients with hypercholesterolemia. J Clin Invest 51:266–278. https://doi.org/10.1172/JCI106811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Simonen P, Gylling H, Miettinen TA (2008) The validity of serum squalene and non-cholesterol sterols as surrogate markers of cholesterol synthesis and absorption in type 2 diabetes. Atherosclerosis. 197:883–888. https://doi.org/10.1016/j.atherosclerosis.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  38. Skrede S, Bjorkhem I, Buchmann MS, Midtvedt T (1985) Biosynthesis of cholestanol from bile acid intermediates in the rabbit and the rat. J Biol Chem 260:77–81

    CAS  PubMed  Google Scholar 

  39. Smith FR, Dell RB, Noble RP, Goodman DS (1976) Parameters of the three-pool model of the turnover of plasma cholesterol in normal and hyperlipidemic humans. J Clin Invest 57:137–148. https://doi.org/10.1172/JCI108253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tremblay AJ, Lamarche B, Ruel IL, Hogue JC, Bergeron J, Gagné C, Couture P (2004) Increased production of VLDL apoB-100 in subjects with familial hypercholesterolemia carrying the same null LDL receptor gene mutation. J Lipid Res 45:866–872. https://doi.org/10.1194/jlr.M300448-JLR200

    Article  CAS  PubMed  Google Scholar 

  41. Woollett LA, Osono Y, Herz J, Dietschy JM (1995) Apolipoprotein E competitively inhibits receptor-dependent low density lipoprotein uptake by the liver but has no effect on cholesterol absorption or synthesis in the mouse. Proc Natl Acad Sci U S A 92:12500–12504. https://doi.org/10.1073/pnas.92.26.12500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zavoral JH, Laine DC, Bale LK, Wellik DL, Ellefson RD, Kuba K, Krivit W, Kottke BA (1982) Cholesterol excretion studies in familial hypercholesterolemic children and their normolipidemic siblings. Am J Clin Nutr 35:1360–1367. https://doi.org/10.1093/ajcn/35.6.1360

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Mr. Antônio dos Santos (Centro de Manutenção e Experimentação de Animais da Clínica Médica, Disciplina de Reumatologia FMUSP) for providing animal care, Mrs. Rosana Aparecida Manólio Soares Freitas (Laboratory of Functional Food, Departamento de Nutrição, USP) for support with the bile acid analyses, and Monique de Fátima Mello and Francisca Elda Batista (Laboratório de Lipides, LIM-10, HCFMUSP) for their technical support.

Funding

This work was supported by the São Paulo Research Foundation (FAPESP), São Paulo, Brazil (grant number: 2015-17566-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valéria S. Nunes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

All procedures were approved by the Animal Use Ethics Committee of the Faculdade de Medicina FMUSP, Universidade de Sao Paulo (protocol number 194/15) and were conducted in accordance with the guidelines of the National Institutes of Health (NIH; USA), the Guide for the Care and Use of Laboratory Animals (Institute of Laboratory Animal Research, 1996), and the Ethical Principles in Animal Experimentation adopted by the Brazilian Society of Animal Sciences Laboratory (SBCAL). Conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• ApoE-KO mice synthesize more cholesterol than LDLR-KO and control mice.

• Cholesterol synthesis was elevated by desmosterol and decreased by lathosterol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, V.S., Cazita, P.M., Catanozi, S. et al. Cholesterol metabolism in mice models of genetic hypercholesterolemia. J Physiol Biochem 76, 437–443 (2020). https://doi.org/10.1007/s13105-020-00753-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-020-00753-1

Keywords

Navigation