Skip to main content

Advertisement

Log in

Altered absorptive function in the gall bladder during cholesterol gallstone formation is associated with abnormal NHE3 complex formation

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Dysfunction of the Na+/H+ exchanger 3 (NHE3) contributes to the formation of cholesterol gallstones. We aimed to investigate whether NHE3 dysfunction is associated with abnormalities in NHE3 complex formation. We fed C57BL/6 mice with control or lithogenic diet and study the expression of NHE3, ezrin, and Na+/H+ exchanger regulatory factor 1 (NHERF1) in the gallbladder (GB) using RT–PCR and western blot. Immunofluorescence and immunoprecipitation were performed to investigate the interactions of NHE3 with ezrin or NHERF1. To explore the initiating factor that leads to NHE3 dysfunction, we stimulated cholangiocarcinoma cells with taurochenodeoxycholate (TCDC) and/or forskolin. The effects of TCDC on the expression of NHE3 regulatory proteins, as well as their bindings to NHE3, were detected by western blot and immunoprecipitation. Enzyme-linked immunosorbent assay was used to study the regulation of cAMP production by TCDC. The expression of NHERF1 and ezrin phosphorylation level were increased in the gallbladder epithelial cells (GBECs) of C57BL/6 mice with cholesterol gallstones. Immunofluorescence studies demonstrated that the subcellular localization of ezrin and NHERF1 were similar to that of NHE3 in GBECs. Immunoprecipitation revealed that ezrin formed macrocomplex with NHE3, which were enhanced after gallstone formation. TCDC increased forskolin-induced cAMP accumulation, and NHERF1 and PKCα expression in cholangiocarcinoma cells. Under the synergistic effect of forskolin, TCDC stimulated ezrin phosphorylation, with enhanced interaction between ezrin and NHE3. The formation of cholesterol gallstones is associated with abnormal formation of NHE3 complexes. Decreased biliary TCDC may be an initiating factor that leads to abnormal GB absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ao M, Sarathy J, Domingue J, Alrefai WA, Rao MC (2013) Chenodeoxycholic acid stimulates Cl(−) secretion via cAMP signaling and increases cystic fibrosis transmembrane conductance regulator phosphorylation in T84 cells. Am J Physiol Cell Physiol 305:C447–C456. https://doi.org/10.1152/ajpcell.00416.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Babich V, Di Sole F (2015) The Na+/H+ Exchanger-3 (NHE3) activity requires ezrin binding to phosphoinositide and its phosphorylation. PLoS One 10:e0129306. https://doi.org/10.1371/journal.pone.0129306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cha B, Tse M, Yun C, Kovbasnjuk O, Mohan S, Hubbard A, Arpin M, Donowitz M (2006) The NHE3 juxtamembrane cytoplasmic domain directly binds ezrin: dual role in NHE3 trafficking and mobility in the brush border. Mol Biol Cell 17:2661–2673. https://doi.org/10.1091/mbc.e05-09-0843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen T, Hubbard A, Murtazina R, Price J, Yang J, Cha B, Sarker R, Donowitz M (2014) Myosin VI mediates the movement of NHE3 down the microvillus in intestinal epithelial cells. J Cell Sci 127:3535–3545. https://doi.org/10.1242/jcs.149930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen Y, Kong J, Wu S (2015) Cholesterol gallstone disease: focusing on the role of gallbladder. Lab Investig 95:124–131. https://doi.org/10.1038/labinvest.2014.140

    Article  CAS  PubMed  Google Scholar 

  6. Chen Y, Wu S, Tian Y, Kong J (2017) Phosphorylation and subcellular localization of Na+/H+ exchanger isoform 3 (NHE3) are associated with altered gallbladder absorptive function after formation of cholesterol gallstones. J Physiol Biochem 73:133–139. https://doi.org/10.1007/s13105-016-0533-1

    Article  CAS  PubMed  Google Scholar 

  7. Chignard N, Mergey M, Veissière D, Poupon R, Capeau J, Parc R, Paul A, Housset C (2003) Bile salts potentiate adenylyl cyclase activity and cAMP-regulated secretion in human gallbladder epithelium. Am J Physiol Gastrointest Liver Physiol 284:G205–G212. https://doi.org/10.1152/ajpgi.00292.2002

    Article  CAS  PubMed  Google Scholar 

  8. Crajoinas RO, Polidoro JZ, Carneiro de Morais CP, Castelo-Branco RC, Girardi AC (2016) Angiotensin II counteracts the effects of cAMP/PKA on NHE3 activity and phosphorylation in proximal tubule cells. Am J Physiol Cell Physiol 311:C768–C776. https://doi.org/10.1152/ajpcell.00191.2016

    Article  PubMed  Google Scholar 

  9. Donowitz M, Mohan S, Zhu CX, Chen TE, Lin R, Cha B, Zachos NC, Murtazina R, Sarker R, Li X (2009) NHE3 regulatory complexes. J Exp Biol 212:1638–1646. https://doi.org/10.1242/jeb.028605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fiorucci S, Distrutti E (2019) The pharmacology of bile acids and their receptors. Handb Exp Pharmacol 256:3–18. https://doi.org/10.1007/164_2019_238

    Article  CAS  PubMed  Google Scholar 

  11. Hayashi H, Tamura A, Krishnan D, Tsukita S, Suzuki Y, Kocinsky HS, Aronson PS, Orlowski J, Grinstein S, Alexander RT (2013) Ezrin is required for the functional regulation of the epithelial sodium proton exchanger, NHE3. PLoS One 8:e55623. https://doi.org/10.1371/journal.pone.0055623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He P, Zhao L, Zhu L, Weinman EJ, De Giorgio R, Koval M, Srinivasan S, Yun CC (2015) Restoration of Na+/H+ exchanger NHE3-containing macrocomplexes ameliorates diabetes-associated fluid loss. J Clin Invest 125:3519–3531. https://doi.org/10.1172/JCI79552

    Article  PubMed  PubMed Central  Google Scholar 

  13. Housset C, Chrétien Y, Debray D, Chignard N (2016) Functions of the gallbladder. Compr Physiol 6:1549–1577. https://doi.org/10.1002/cphy.c150050

    Article  PubMed  Google Scholar 

  14. Hu MM, He WR, Gao P, Yang Q, He K, Cao LB, Li S, Feng YQ, Shu HB (2019) Virus-induced accumulation of intracellular bile acids activates the TGR5-β-arrestin-SRC axis to enable innate antiviral immunity. Cell Res 29:193–205. https://doi.org/10.1038/s41422-018-0136-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keitel V, Cupisti K, Ullmer C, Knoefel WT, Kubitz R, Häussinger D (2009) The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology 50:861–870. https://doi.org/10.1002/hep.23032

    Article  CAS  PubMed  Google Scholar 

  16. Lee-Kwon W, Kim JH, Choi JW, Kawano K, Cha B, Dartt DA, Zoukhri D, Donowitz M (2003) Ca2+−dependent inhibition of NHE3 requires PKC alpha which binds to E3KARP to decrease surface NHE3 containing plasma membrane complexes. Am J Physiol Cell Physiol 285:C1527–C1536. https://doi.org/10.1152/ajpcell.00017.2003

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Lu LG (2018) Therapeutic roles of bile acid signaling in chronic liver diseases. J Clin Transl Hepatol 6:425–430. https://doi.org/10.14218/JCTH.2018.00025

    Article  PubMed  PubMed Central  Google Scholar 

  18. Meyer G, Guizzardi F, Rodighiero S, Manfredi R, Saino S, Sironi C, Garavaglia ML, Bazzini C, Bottà G, Portincasa P, Calamita G, Paulmichl M (2005) Ion transport across the gallbladder epithelium. Curr Drug Targets Immune Endocr Metabol Disord 5:143–151. https://doi.org/10.2174/1568008054064805

    Article  CAS  PubMed  Google Scholar 

  19. Narins SC, Ramakrishnan R, Park EH, Bolno PB, Haggerty DA, Smith PR, Meyers WC, Abedin MZ (2005) Protein kinase C-alpha regulation of gallbladder Na+ transport becomes progressively more dysfunctional during gallstone formation. J Lab Clin Med 146:227–237. https://doi.org/10.1016/j.lab.2005.05.008

    Article  CAS  PubMed  Google Scholar 

  20. Narins SC, Ramakrishnan R, Park EH, Smith PR, Meyers WC, Abedin MZ (2005) Gallbladder Na+/H+ exchange activity is up-regulated prior to cholesterol crystal formation. Eur J Clin Investig 35:514–522. https://doi.org/10.1111/j.1365-2362.2005.01520.x

    Article  CAS  Google Scholar 

  21. Nowak D, Mazur AJ, Popow-Woźniak A, Radwańska A, Mannherz HG, Malicka-Błaszkiewicz M (2010) Subcellular distribution and expression of cofilin and ezrin in human colon adenocarcinoma cell lines with different metastatic potential. Eur J Histochem 54:e14. https://doi.org/10.4081/ejh.2010.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sarker R, Grønborg M, Cha B, Mohan S, Chen Y, Pandey A, Litchfield D, Donowitz M, Li X (2008) Casein kinase 2 binds to the C terminus of Na+/H+ exchanger 3 (NHE3) and stimulates NHE3 basal activity by phosphorylating a separate site in NHE3. Mol Biol Cell 19:3859–3870. https://doi.org/10.1091/mbc.e08-01-0019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sarker R, Valkhoff VE, Zachos NC, Lin R, Cha B, Chen TE, Guggino S, Zizak M, de Jonge H, Hogema B, Donowitz M (2011) NHERF1 and NHERF2 are necessary for multiple but usually separate aspects of basal and acute regulation of NHE3 activity. Am J Physiol Cell Physiol 300:C771–C782. https://doi.org/10.1152/ajpcell.00119.2010

    Article  CAS  PubMed  Google Scholar 

  24. Singh V, Yang J, Chen TE, Zachos NC, Kovbasnjuk O, Verkman AS, Donowitz M (2014) Translating molecular physiology of intestinal transport into pharmacologic treatment of diarrhea: stimulation of Na+ absorption. Clin Gastroenterol Hepatol 12:27–31. https://doi.org/10.1016/j.cgh.2013.10.020

    Article  CAS  PubMed  Google Scholar 

  25. Wade JB, Liu J, Coleman RA, Cunningham R, Steplock DA, Lee-Kwon W, Pallone TL, Shenolikar S, Weinman EJ (2003) Localization and interaction of NHERF isoforms in the renal proximal tubule of the mouse. Am J Physiol Cell Physiol 285:C1494–C1503. https://doi.org/10.1152/ajpcell.00092.2003

    Article  CAS  PubMed  Google Scholar 

  26. Wang W, Cheng Z, Wang Y, Dai Y, Zhang X, Hu S (2019) Role of bile acids in bariatric surgery. Front Physiol 10:374. https://doi.org/10.3389/fphys.2019.00374

    Article  PubMed  PubMed Central  Google Scholar 

  27. Weinman EJ, Steplock D, Shenolikar S (2003) NHERF-1 uniquely transduces the cAMP signals that inhibit sodium-hydrogen exchange in mouse renal apical membranes. FEBS Lett 536:141–144. https://doi.org/10.1016/S0014-5793(03)00043-7

    Article  CAS  PubMed  Google Scholar 

  28. Weinman EJ, Wang Y, Wang F, Greer C, Steplock D, Shenolikar S (2003) A C-terminal PDZ motif in NHE3 binds NHERF-1 and enhances cAMP inhibition of sodium-hydrogen exchange. Biochemistry 42:12662–12668. https://doi.org/10.1021/bi035244l

    Article  CAS  PubMed  Google Scholar 

  29. Yang J, Sarker R, Singh V, Sarker P, Yin J, Chen TE, Chaerkady R, Li X, Tse CM, Donowitz M (2015) The NHERF2 sequence adjacent and upstream of the ERM-binding domain affects NHERF2-ezrin binding and dexamethasone stimulated NHE3 activity. Biochem J 470:77–90. https://doi.org/10.1042/BJ20150238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors received financial support from NSFC (Natural Science Foundation of China) (81500483), and also from the Science Research Project of Education Department in Liaoning Province (L2015566).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuodong Wu.

Ethics declarations

The study protocol was approved by the Institution Review Board of Shengjing Hospital, China Medical University, and all animal experiments were performed according to the guidelines of the Animal Care and Use Committee of the US National Institute of Health for experimental use of laboratory animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wu, S., Qi, L. et al. Altered absorptive function in the gall bladder during cholesterol gallstone formation is associated with abnormal NHE3 complex formation. J Physiol Biochem 76, 427–435 (2020). https://doi.org/10.1007/s13105-020-00751-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-020-00751-3

Keywords

Navigation