Skip to main content
Log in

Ultrawide-bandgap AlGaN-based HEMTs for high-power switching

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The potential of AlGaN-based ultrawide-bandgap high-electron-mobility transistors (HEMTs) with high (> 60%) Al composition for use in high-power switching applications is studied. The devices are simulated with a gate length of 2 µm, and their figures of merit are evaluated as functions of the gate-to-drain distance, operating temperature, and different substrates. At room temperature (RT), the maximum drain current, ID (at a gate voltage of VGS = 2 V), ION/IOFF ratio, threshold voltage, and subthreshold swing are found to be 219 mA/mm, ~ 109, −11.4 V, and 85 mV/decade, respectively, at a drain bias of VDS of 15 V for the device with LGD = 3.5 µm. The breakdown voltages are calculated as 396–830 V for the devices with gate-to-drain spacing LGD varying from 3.5 to 9.5 µm, respectively. The lowest OFF-state power dissipation of 0.73 nW/mm is found for the device with LGD = 3.5 µm at RT. The device also shows excellent behavior at high temperatures. The high-Al-content AlGaN-based HEMT with an AlN/sapphire substrate shows outstanding thermal stability and exhibits little thermal droop at high voltages. These results indicate that the structure proposed herein is an excellent choice for high-power switching devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amano, H., et al.: The 2018 GaN power electronics roadmap. J. Phys. D Appl. Phys. 51, 163001 (2018). https://doi.org/10.1088/1361-6463/aaaf9d

    Article  Google Scholar 

  2. Yang, C., Luo, X., Sun, T., et al.: High breakdown voltage and low dynamic ON-resistance AlGaN/GaN HEMT with fluorine ion implantation in SiNx passivation layer. Nanoscale Res. Lett. 14, 191 (2019). https://doi.org/10.1186/s11671-019-3025-8

    Article  Google Scholar 

  3. Kachi, T.: Recent progress of GaN power devices for automotive applications. Jpn. J. Appl. Phys. 53, 100210 (2014). https://doi.org/10.7567/JJAP.53.100210

    Article  Google Scholar 

  4. Su, M., Chen, C., Rajan, S.: Prospects for the application of GaN power devices in hybrid electric vehicle drive systems. Semicond. Sci. Technol. 28, 074012 (2013). https://doi.org/10.1088/0268-1242/28/7/074012

    Article  Google Scholar 

  5. Veliadis, V., et al.: Reliable operation of SiC JFETs subjected to over 2.4 million 1200-V/115-A hard switching events at 150°C. IEEE Electron. Device Lett. 34, 384–386 (2013). https://doi.org/10.1109/led.2013.2241724

    Article  Google Scholar 

  6. Baliga, B.J.: Gallium nitride devices for power electronic applications. Semicond. Sci. Technol. 28, 074011 (2013). https://doi.org/10.1088/0268-1242/28/7/074011

    Article  Google Scholar 

  7. Schroder, D.K.: Progress in SiC materials/devices and their competition. Int. J. High-Speed Electron. Syst. 21, 1250009 (2012). https://doi.org/10.1142/s0129156412500097

    Article  Google Scholar 

  8. Scott, M.J., Fu, L., Zhang, X., Li, J., Yao, C., Sievers, M., Wang, J.: Merits of gallium nitride based power conversion. Semicond. Sci. Technol. 28, 074013 (2013). https://doi.org/10.1088/0268-1242/28/7/074013

    Article  Google Scholar 

  9. Tsao, J.Y., et al.: Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv. Electron. Mater. 4, 1600501 (2018). https://doi.org/10.1002/aelm.201600501

    Article  Google Scholar 

  10. Hashimoto, S., Akita, K., Yamamoto, Y., Ueno, M., Nakamura, T., Yafune, N., Sakuno, K., Tokuda, H., Kuzuhara, M.: High carrier concentration in high Al-composition AlGaN channel HEMTs. Phys. Status Solidi C 9, 373–376 (2012). https://doi.org/10.1002/pssc.201100289

    Article  Google Scholar 

  11. Hudgins, J.L., Simin, G.S., Santi, E., Khan, M.A.: An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron. 18, 907–914 (2003). https://doi.org/10.1109/TPEL.2003.810840

    Article  Google Scholar 

  12. Carey, P.H., et al.: Operation up to 500 °C of Al0.85Ga0.15N/Al0.7Ga0.3N high electron mobility transistors. IEEE J. Electron. Devices Soc. 7, 444–452 (2019). https://doi.org/10.1109/jeds.2019.2907306

    Article  Google Scholar 

  13. Bajaj, S., Hung, T.H., Akyol, F., Nath, D., Rajan, S.: Modeling of high composition AlGaN channel high electron mobility transistors with large threshold voltage. Appl. Phys. Lett. 105, 263503 (2014). https://doi.org/10.1063/1.4905323

    Article  Google Scholar 

  14. Lundh, J.S., Chatterjee, B., Song, Y.: Multidimensional thermal analysis of an ultrawide bandgap AlGaN channel high electron mobility transistor. Appl. Phys. Lett. 115, 153503 (2019). https://doi.org/10.1063/1.5115013

    Article  Google Scholar 

  15. Kaplar, R.J., Neely, J.C., Huber, D.L., Rashkin, L.J.: Generation-after-next power electronics: ultrawide-bandgap devices, high-temperature packaging, and magnetic nanocomposite material. IEEE Power Electron. Mag. 4, 36–42 (2017). https://doi.org/10.1109/MPEL.2016.2643098

    Article  Google Scholar 

  16. Coltrina, M.E., Kaplar, R.J.: Transport and breakdown analysis for improved figure-of-merit for AlGaN power devices. J. Appl. Phys. 121, 055706 (2017). https://doi.org/10.1063/1.4975346

    Article  Google Scholar 

  17. Yafune, N., Hashimoto, S., Akita, K., Yamamoto, Y., Tokuda, H., Kuzuhara, M.: AlN/AlGaN HEMTs on AlN substrate for stable high-temperature operation. Electron. Lett. 50, 211–212 (2014). https://doi.org/10.1049/el.2013.2846

    Article  Google Scholar 

  18. Muhtadi, S., Hwang, S.M., Coleman, A., Asif, F., Simin, G., Chandrashekhar, M.V.S., Khan, A.: High electron mobility transistors with Al0.65Ga0.35N channel layers on thick AlN/sapphire templates. IEEE Electron Device Lett. 38, 914–917 (2017). https://doi.org/10.1109/led.2017.2701651

    Article  Google Scholar 

  19. Muhtadi, S.M.: Study of ultra-wide band-gap AlxGa1−xN field-effect transistors for power electronic applications. Ph.D. Thesis, University of South Carolina, USA 2017. https://scholarcommons.sc.edu/etd/4530. Accessed 4 May 2020

  20. Dang-Hui, W., Yue, H., Sheng-Rui, X., Tian-Han, X., Dang-Chao, W., Ting-Zhen, Y., Ya-Ni, Z.: Reducing dislocations of thick AlGaN epilayer by combining low-temperature AlN nucleation layer onc-plane sapphire substrates. J. Alloys Compd. 555, 311–314 (2013). https://doi.org/10.1016/j.jallcom.2012.12.018

    Article  Google Scholar 

  21. Hakamata, J., Kawase, Y., Dong, L., Iwayama, S., Iwaya, M., Takeuchi, T., Kamiyama, S., Miyake, H., Akasaki, I.: Growth of high-quality AlN and AlGaN films on sputtered AlN/Sapphire templates via high-temperature annealing. Phys. Status Solidi B 225, 1700506 (2018). https://doi.org/10.1002/pssb.201700506

    Article  Google Scholar 

  22. Muhtadi, S., Hwang, S.M., Coleman, A., Asif, F., Lunev, A., Chandrashekhar, M.V.S., Khan, A.: High temperature operation of n-AlGaN channel metal semiconductor field effect transistors on low-defect AlN templates. Appl. Phys. Lett. 110, 193501 (2017). https://doi.org/10.1063/1.4982656

    Article  Google Scholar 

  23. Yafune, N., Hashimoto, S., Akita, K., Yamamoto, Y., Kuzuhara, M.: Low-resistive ohmic contacts for AlGaN channel high-electron mobility transistors using Zr/Al/Mo/Au metal stack. Jpn. J. Appl. Phys. 50, 100202 (2011). https://doi.org/10.1143/JJAP.50.100202

    Article  Google Scholar 

  24. Silvaco Atlas User’s Manual: Released date Aug 30 (2016). https://dynamic.silvaco.com/dynamicweb/jsp/downloads/DownloadManualsAction.do?req=silen-manuals&nm=atla. Accessed 4 May 2020

  25. Albrecht, J.D., Wang, R.P., Ruden, P.P., Farahmand, M., Brennan, K.F.: Electron transport characteristics of GaN for high temperature device modeling. J. Appl. Phys. 83, 4777 (1998). https://doi.org/10.1063/1.367269

    Article  Google Scholar 

  26. Palankovski, V., Selberherr, S.: Thermal models for semiconductor device simulation. In: Third European Conference on High Temperature Electronics, HITEN 99, pp. 25–28. IEEE Cat. No.99EX372, 7 July 1999, Berlin (1999). https://doi.org/10.1109/hiten.1999.827343

  27. Mehedi, I.M., Alshareef, A.M., Islam, M.R., Hasan, M.T.: GaN-based double-gate (DG) sub-10-nm MOSFETs: effects of gate work function. J. Comput. Electron. 17, 663 (2018). https://doi.org/10.1007/s10825-017-1119-z

    Article  Google Scholar 

  28. Fareed, Q., Adivarahan, V., Gaevski, M., Katona, T., Mei, J., Ponce, F.A., Khan, A.: Metal–organic hydride vapor phase epitaxy of AlxGa1−xN films over sapphire. Jpn. J. Appl. Phys. 46, L752–L754 (2007). https://doi.org/10.1143/JJAP.46.L752

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Tanvir Hasan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuvo, A.A., Islam, M.R. & Hasan, M.T. Ultrawide-bandgap AlGaN-based HEMTs for high-power switching. J Comput Electron 19, 1100–1106 (2020). https://doi.org/10.1007/s10825-020-01532-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01532-3

Keywords

Navigation