Skip to main content
Log in

A charge-plasma-based dual-metal-gate recessed-source/drain dopingless junctionless transistor with enhanced analog and RF performance

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A distinctive charge plasma approach is used to propose a novel dual-metal-gate (DMG) recessed-source/drain dopingless junctionless transistor (Re S/D DLJLT) in which the source/drain (S/D) series resistance is reduced without any increment of the gate-to-drain Miller capacitance. In this device, the charge plasma approach is applied to induce an N+ (virtually doped) S/D region by using metals with appropriate work functions for the electrodes. The direct-current (DC) and analog/radio frequency (RF) figures of merit (FOMs) of the proposed device are analyzed using two-dimensional (2-D) numerical calculations and compared with those for a DMG recessed-source/drain junction transistor (Re S/D JT) of identical dimensions. The results reveal that the DMG-Re S/D DLJLT exhibits enhanced DC and analog/RF performance compared with the DMG-Re S/D JT. The total gate length (L) is divided between the control gate (L1) and screen gate (L2), and the numerical investigations are carried out with different ratios of the control gate to screen gate lengths (L1:L2) to determine the optimized gate length for the DMG. A subthreshold slope of 61.32 mV/dec is obtained for the proposed device with L1:L2 = 1:1. An improvement in the ON-state current (ION) is observed due to the introduction of the charge plasma concept, which also reduces the OFF-state leakage current (IOFF) and causes a net enhancement in the ION/IOFF ratio. The device proposed herein also solves the problems of random doping fluctuation, doping activation, and threshold voltage variation and may thus be preferred over DMG-Re S/D JTs for use in analog/RF and digital applications due to its improved performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Edgar, L.J.: Method and apparatus for controlling electric currents. U.S. Patent 1,745,175, issued January 28, 1930

  2. Carballo, J.A., Chan, W.T.J., Gargini, P.A., Kahng, A.B., Nath, S.: ITRS 2.0: toward a re-framing of the semiconductor technology roadmap. In: IEEE 32nd International Conference on Computer Design (ICCD), pp. 139–146. IEEE (2014). https://doi.org/10.1109/ICCD.2014.6974673

  3. Moore, G.E.: Cramming more components onto integrated circuits, pp. 114–117 (1965)

  4. Schaller, R.R.: Moore’s law: past, present and future. IEEE Spectr. 34(6), 52–59 (1997). https://doi.org/10.1109/6.591665

    Article  Google Scholar 

  5. Choi, Y.K., Asano, K., Lindert, N., Subramanian, V., King, T.J., Bokor, J., Hu, C.: Ultra-thin body SOI MOSFET for deep-sub-tenth micron era. In: International Electron Devices Meeting 1999. Technical Digest (Cat. No. 99CH36318) (pp. 919–921). IEEE (1999). https://doi.org/10.1109/IEDM.1999.824298

  6. Doris, B., Ieong, M., Kanarsky, T., Zhang, Y., Roy, R.A., Dokumaci, O., Ren, Z., Jamin, F.F., Shi, L., Natzle, W., Huang, H.J.: Extreme scaling with ultra-thin Si channel MOSFETs. In: Digest—International Electron Devices Meeting (pp. 267–270). IEEE (2002). https://doi.org/10.1109/IEDM.2002.1175829

  7. Wong, S.S., Bradbury, D.R., Chen, D.C., Chiu, K.Y.: Elevated source/drain MOSFET. In: International Electron Devices Meeting, pp. 634–637. IEEE (1984). https://doi.org/10.1109/IEDM.1984.190802

  8. Pfiester, J.R., Sivan, R.D., Liaw, H.M., Seelbach, C.A., Gunderson, C.D.: A self-aligned elevated source/drain MOSFET. IEEE Electron Device Lett. 11(9), 365–367 (1990). https://doi.org/10.1109/55.62957

    Article  Google Scholar 

  9. Zhang, Z., Zhang, S., Chan, M.: Self-align recessed source drain ultrathin body SOI MOSFET. IEEE Electron Device Lett. 25(11), 740–742 (2004). https://doi.org/10.1109/LED.2004.837582

    Article  Google Scholar 

  10. Ahn, C.-G., Cho, W.-J., Im, K., Yang, J.-H., Baek, I.-B., Baek, S., Lee, S.: 30-nm recessed S/D SOI MOSFET with an ultrathin body and a low SDE resistance. IEEE Electron Device Lett. 26(7), 486–488 (2005). https://doi.org/10.1109/LED.2005.851183

    Article  Google Scholar 

  11. Ke, W., Han, X., Li, D., Wang, X., Zhang, T., Han, R., Zhang, S.: Recessed source/drain for sub-50 nm UTB SOI MOSFET. Semicond. Sci. Technol. 22(5), 577 (2007). https://doi.org/10.1088/0268-1242/22/5/021

    Article  Google Scholar 

  12. Sviličić, B., Jovanović, V., Suligoj, T.: Analytical models of front-and back-gate potential distribution and threshold voltage for recessed source/drain UTB SOI MOSFETs. Solid-State Electron. 53(5), 540–547 (2009). https://doi.org/10.1016/j.sse.2009.03.002

    Article  Google Scholar 

  13. Sviličić, B., Jovanović, V., Suligoj, T.: Analysis of subthreshold conduction in short-channel recessed source/drain UTB SOI MOSFETs. Solid-State Electron. 54(5), 545–551 (2010). https://doi.org/10.1016/j.sse.2010.01.009

    Article  Google Scholar 

  14. Saramekala, G.K., Santra, A., Dubey, S., Jit, S., Tiwari, P.K.: An analytical threshold voltage model for a short-channel dual-metal-gate (DMG) recessed-source/drain (Re-S/D) SOI MOSFET. Superlattices Microstruct. 60, 580–595 (2013). https://doi.org/10.1016/j.spmi.2013.05.022

    Article  Google Scholar 

  15. Kumar, A., Tiwari, P.K.: A threshold voltage model of short-channel fully-depleted recessed-source/drain (Re-S/D) UTB SOI MOSFETs including substrate induced surface potential effects. Solid-State Electron. 95, 52–60 (2014). https://doi.org/10.1016/j.sse.2014.03.004

    Article  Google Scholar 

  16. Colinge, J.P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., et al.: Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225 (2010). https://doi.org/10.1038/nnano.2010.15

    Article  Google Scholar 

  17. Lee, C.W., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.P.: Performance estimation of junctionless multigate transistors. Solid-State Electron. 54(2), 97–103 (2010). https://doi.org/10.1016/j.sse.2009.12.003

    Article  Google Scholar 

  18. Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Theory of the junctionless nanowire FET. IEEE Trans. Electron Devices 58(9), 2903–2910 (2011). https://doi.org/10.1109/TED.2011.2159608

    Article  Google Scholar 

  19. Leung, G., Chui, C.O.: Variability impact of random dopant fluctuation on nanoscale junctionless FinFETs. IEEE Electron Device Lett. 33(6), 767–769 (2012). https://doi.org/10.1109/LED.2012.2191931

    Article  Google Scholar 

  20. Giusi, G., Lucibello, A.: Variability of the drain current in junctionless nanotransistors induced by random dopant fluctuation. IEEE Trans. Electron Devices 61(3), 702–706 (2014). https://doi.org/10.1109/TED.2014.2299292

    Article  Google Scholar 

  21. Hueting, R.J.E., Rajasekharan, B., Salm, C., Schmitz, J.: The charge plasma PN diode. IEEE Electron Device Lett. 29(12), 1367–1369 (2008). https://doi.org/10.1109/LED.2008.2006864

    Article  Google Scholar 

  22. Rajasekharan, B., Hueting, R.J., Salm, C., van Hemert, T., Wolters, R.A., Schmitz, J.: Fabrication and characterization of the charge-plasma diode. IEEE Electron Device Lett. 31(6), 528–530 (2010). https://doi.org/10.1109/LED.2010.2045731

    Article  Google Scholar 

  23. Kumar, M.J., Nadda, K.: Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron Devices 59(4), 962–967 (2012). https://doi.org/10.1109/TED.2012.2184763

    Article  Google Scholar 

  24. Nadda, K., Kumar, M.J.: Vertical bipolar charge plasma transistor with buried metal layer. Sci. Rep. 5, 7860 (2015). https://doi.org/10.1038/srep07860

    Article  Google Scholar 

  25. Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013). https://doi.org/10.1109/TED.2013.2276888

    Article  Google Scholar 

  26. Sahu, C., Singh, J.: Charge-plasma based process variation immune junctionless transistor. IEEE Electron Device Lett. 35(3), 411–413 (2014). https://doi.org/10.1109/LED.2013.2297451

    Article  Google Scholar 

  27. Sahu, C., Singh, J.: Potential benefits and sensitivity analysis of dopingless transistor for low power applications. IEEE Trans. Electron Devices 62(3), 729–735 (2015). https://doi.org/10.1109/TED.2015.2389900

    Article  Google Scholar 

  28. Verma P.K., Rawat, A.S., Gupta, S.K.: Temperature-dependent analog, RF, and linearity analysis of junctionless quadruple gate MOSFETs for analog applications. In: Advances in VLSI, Communication, and Signal Processing, pp. 355–366. Springer, Singapore (2020). https://doi.org/10.1007/978-981-32-9775-3_32

  29. Verma, P.K., Mishra, V., Verma, Y.K., Yadav, P.K., Gupta, S.K: A novel dual material extra insulator layer fin field effect transistor for high-performance nanoscale applications. In: Advances in VLSI, Communication, and Signal Processing, pp. 377–385. Springer, Singapore (2020). https://doi.org/10.1007/978-981-32-9775-3_34

  30. Gupta, S.K.: Threshold voltage model of junctionless cylindrical surrounding gate MOSFETs including fringing field effects. Superlattices Microstruct. 88, 188–197 (2015). https://doi.org/10.1016/j.spmi.2015.09.001

    Article  Google Scholar 

  31. Mishra, V., Verma, Y.K., Verma, P.K., Gupta, S.K.: EMA-based modeling of the surface potential and drain current of dual-material gate-all-around TFETs. J. Comput. Electron. 17(4), 1596–1602 (2018). https://doi.org/10.1007/s10825-018-1250-5

    Article  Google Scholar 

  32. Verma, Y.K., Mishra, V., Verma, P.K., Gupta, S.K.: Analytical modelling and electrical characterisation of ZnO based HEMTs. Int. J. Electron. 106(5), 707–720 (2019). https://doi.org/10.1080/00207217.2018.1545931

    Article  Google Scholar 

  33. Sahay, S., Kumar, M.J.: Junctionless Field-Effect Transistors: Design, Modeling, and Simulation. Wiley, Hoboken (2019)

    Book  Google Scholar 

  34. Verma, P.K., Gupta, S.K.: Proposal of charge plasma based recessed source/drain dopingless junctionless transistor and its linearity distortion analysis for circuit applications. Silicon (2020). https://doi.org/10.1007/s12633-020-00402-8

    Article  Google Scholar 

  35. Singh, S., Raman, A.: A dopingless gate-all-around (GAA) gate-stacked nanowire FET with reduced parametric fluctuation effects. J. Comput. Electron. 17, 967–976 (2018). https://doi.org/10.1007/s10825-018-1166-0

    Article  Google Scholar 

  36. Singh, S., Raman, A.: Gate-all-around charge plasma-based dual material gate-stack nanowire FET for enhanced analog performance. IEEE Trans. Electron Devices 65, 3026–3032 (2018). https://doi.org/10.1109/TED.2018.2816898

    Article  Google Scholar 

  37. Shan, C., Wang, Y., Bao, M.-T.: A charge-plasma-based transistor with induced graded channel for enhanced analog performance. IEEE Trans. Electron Devices 63(6), 2275–2281 (2016). https://doi.org/10.1109/TED.2016.2549554

    Article  Google Scholar 

  38. Bashir, F., Loan, S.A., Rafat, M., Alamoud, A.R., Abbasi, S.A.: A high performance gate engineered charge plasma based tunnel field effect transistor. J. Comput. Electron. 14(2), 477–485 (2015). https://doi.org/10.1007/s10825-015-0665-5

    Article  Google Scholar 

  39. Kumar, N., Raman, A.: Performance assessment of the charge-plasma-based cylindrical gaa vertical nanowire TFET with impact of interface trap charges. IEEE Trans. Electron Devices 66(10), 4453–4460 (2019). https://doi.org/10.1109/TED.2019.2935342

    Article  Google Scholar 

  40. ATLAS.: ATLAS User Manual. Silvaco International. Santa Clara, CA (2015)

Download references

Acknowledgements

The authors would like to express their honest thanks to the VLSI laboratory of MNNIT Allahabad, for providing resources to use SILVACO TCAD for numerical investigation of the device structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateek Kishor Verma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P.K., Verma, Y.K., Mishra, V. et al. A charge-plasma-based dual-metal-gate recessed-source/drain dopingless junctionless transistor with enhanced analog and RF performance. J Comput Electron 19, 1085–1099 (2020). https://doi.org/10.1007/s10825-020-01528-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01528-z

Keywords

Navigation