Skip to main content
Log in

Tunable thermal conductivity of single layer MoS2 nanoribbons: an equilibrium molecular dynamics study

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Thermal transport in single-layer MoS2 nanoribbons (SLMOSNRs) has been comprehensively studied using equilibrium molecular dynamics (EMD) simulations based on the Green–Kubo formulation. The room-temperature thermal conductivity of a pristine ~ 10 nm × 4 nm zigzag MoS2 nanoribbon is computed to be ~ 117 W m−1 K−1 using the Stillinger–Weber (SW) interatomic potential. The thermal conductivity is also studied as a function of temperature and the dimensions of the sample. The thermal conductivity of SLMOSNRs is found to decrease with increasing temperature due to increased phonon–phonon Umklapp scattering, while it shows the opposite trend as the length is increased. With increasing length, the thermal conductivity initially increases rapidly but gradually less so. The thermal conductivity exhibits a similar trend with increasing sample width. Moreover, the impact of defect engineering, an effective tool for tailoring the thermal transport in single-layer MoS2 by considering various defects, namely point vacancies, bi-vacancies, and edge vacancies, is studied. The results of this study show that the thermal conductivity of SLMOSNRs with defects is significantly reduced compared with their pristine counterparts. The reduction of the thermal conductivity with increasing defect concentration is greater at low than high concentration. To study the underlying mechanism responsible for such characteristics, the phonon density of states (PDOS) of SLMOSNRs is calculated. This study provides a detailed demonstration of how the thermal transport characteristics of MoS2 nanostructures can be tuned, promoting the potential application of MoS2 in thermoelectric and nanoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gu, X., Yang, R.: Phonon transport in single-layer transition metal dichalcogenides: a first-principles study. Appl. Phys. Lett. 105(13), 131903 (2014)

    Google Scholar 

  2. Liu, S., Xu, X., Xie, R., Zhang, G., Li, B.: Anomalous heat conduction and anomalous diffusion in low dimensional nanoscale systems. Eur. Phys. J. B 85(10), 337 (2012)

    Google Scholar 

  3. Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R., Lee, H., Wang, D., Ren, Z., Fleurial, J.P., Gogna, P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19(8), 1043 (2007)

    Google Scholar 

  4. Geim, A., Novoselov, K.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Google Scholar 

  5. De Heer, W.A.: The invention of graphene electronics and the physics of epitaxial graphene on silicon carbide. Phys. Scr. 2012(T146), 014004 (2012)

    Google Scholar 

  6. Du, J., Zhao, L., Zeng, Y., Zhang, L., Li, F., Liu, P., Liu, C.: Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 49(4), 1094 (2011)

    Google Scholar 

  7. Jasuja, K., Berry, V.: Implantation and growth of dendritic gold nanostructures on graphene derivatives: electrical property tailoring and Raman enhancement. ACS Nano 3(8), 2358 (2009)

    Google Scholar 

  8. Guinea, F., Katsnelson, M., Geim, A.: Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6(1), 30 (2010)

    Google Scholar 

  9. Ovid’Ko, I.: Mechanical properties of graphene. Rev. Adv. Mater. Sci 34(1), 1 (2013)

    Google Scholar 

  10. Min, K., Aluru, N.R.: Mechanical properties of graphene under shear deformation. Appl. Phys. Lett. 98(1), 013113 (2011)

    Google Scholar 

  11. Papageorgiou, D.G., Kinloch, I.A., Young, R.J.: Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater Sci. 90, 75 (2017)

    Google Scholar 

  12. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902 (2008)

    Google Scholar 

  13. Renteria, J.D., Ramirez, S., Malekpour, H., Alonso, B., Centeno, A., Zurutuza, A., Cocemasov, A.I., Nika, D.L., Balandin, A.A.: Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 25(29), 4664 (2015)

    Google Scholar 

  14. Renteria, J.D., Nika, D.L., Balandin, A.A.: Graphene thermal properties: applications in thermal management and energy storage. Appl. Sci. 4(4), 525 (2014)

    Google Scholar 

  15. Zhang, X., Sun, D., Li, Y., Lee, G.H., Cui, X., Chenet, D., You, Y., Heinz, T.F., Hone, J.C.: Measurement of lateral and interfacial thermal conductivity of Single-and Bilayer MoS2 and MoSe2 using refined optothermal Raman technique. ACS Appl. Mater. Interfaces 7(46), 25923 (2015)

    Google Scholar 

  16. Yu, Z., Ong, Z.Y., Li, S., Xu, J.B., Zhang, G., Zhang, Y.W., Shi, Y., Wang, X.: Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors. Adv. Funct. Mater. 27(19), 1604093 (2017)

    Google Scholar 

  17. Rawat, A., Jena, N., De Sarkar, A., et al.: A comprehensive study on carrier mobility and artificial photosynthetic properties in group VI B transition metal dichalcogenide monolayers. J. Mater. Chem. A 6(18), 8693 (2018)

    Google Scholar 

  18. Yan, R., Simpson, J.R., Bertolazzi, S., Brivio, J., Watson, M., Wu, X., Kis, A., Luo, T., Hight Walker, A.R., Xing, H.G.: Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 8(1), 986 (2014)

    Google Scholar 

  19. Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS 2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)

    Google Scholar 

  20. Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.Y., Galli, G., Wang, F.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271 (2010)

    Google Scholar 

  21. Kandemir, A., Yapicioglu, H., Kinaci, A., Çağın, T., Sevik, C.: Thermal transport properties of MoS2 and MoSe2 monolayers. Nanotechnology 27(5), 055703 (2016)

    Google Scholar 

  22. Jin, Z., Liao, Q., Fang, H., Liu, Z., Liu, W., Ding, Z., Luo, T., Yang, N.: A revisit to high thermoelectric performance of single-layer MoS2. Sci. Rep. 5, 18342 (2015)

    Google Scholar 

  23. Gandi, A.N., Schwingenschlögl, U.: Thermal conductivity of bulk and monolayer MoS2. EPL (Europhys. Lett.) 113(3), 36002 (2016)

    Google Scholar 

  24. Li, W., Carrete, J., Mingo, N.: Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles. Appl. Phys. Lett. 103(25), 253103 (2013)

    Google Scholar 

  25. Sahoo, S., Gaur, A.P., Ahmadi, M., Guinel, M.J.F., Katiyar, R.S.: Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 117(17), 9042 (2013)

    Google Scholar 

  26. Taube, A., Judek, J., Łapińska, A., Zdrojek, M.: Temperature-dependent thermal properties of supported MoS2MoS2 monolayers. ACS Appl. Mater. Interfaces 7(9), 5061 (2015)

    Google Scholar 

  27. Liu, X., Zhang, G., Pei, Q.X., Zhang, Y.W.: Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl. Phys. Lett. 103(13), 133113 (2013)

    Google Scholar 

  28. Wang, X., Tabarraei, A.: Phonon thermal conductivity of monolayer MoS2. Appl. Phys. Lett. 108(19), 191905 (2016)

    Google Scholar 

  29. Jiang, J.W., Zhuang, X., Rabczuk, T.: Orientation dependent thermal conductance in single-layer MoS 2. Sci. Rep. 3, 2209 (2013)

    Google Scholar 

  30. Wang, Y., Zhang, K., Xie, G.: Remarkable suppression of thermal conductivity by point defects in MoS2 nanoribbons. Appl. Surf. Sci. 360, 107 (2016)

    Google Scholar 

  31. Wei, X., Wang, Y., Shen, Y., Xie, G., Xiao, H., Zhong, J., Zhang, G.: Phonon thermal conductivity of monolayer MoS2: A comparison with single layer graphene. Appl. Phys. Lett. 105(10), 103902 (2014)

    Google Scholar 

  32. Zhao, W., Wang, Y., Wu, Z., Wang, W., Bi, K., Liang, Z., Yang, J., Chen, Y., Xu, Z., Ni, Z.: Defect-engineered heat transport in graphene: a route to high efficient thermal rectification. Sci. Rep. 5, 11962 (2015)

    Google Scholar 

  33. Malekpour, H., Ramnani, P., Srinivasan, S., Balasubramanian, G., Nika, D.L., Mulchandani, A., Lake, R.K., Balandin, A.A.: Thermal conductivity of graphene with defects induced by electron beam irradiation. Nanoscale 8(30), 14608 (2016)

    Google Scholar 

  34. Berdiyorov, G., Peeters, F.: Influence of vacancy defects on the thermal stability of silicene: a reactive molecular dynamics study. Rsc Adv. 4(3), 1133 (2014)

    Google Scholar 

  35. Khan, A.I., Paul, R., Subrina, S.: Characterization of thermal and mechanical properties of stanene nanoribbons: a molecular dynamics study. RSC Adv. 7(80), 50485 (2017)

    Google Scholar 

  36. Ong, Z.Y., Pop, E.: Effect of substrate modes on thermal transport in supported graphene. Phys. Rev. B 84(7), 075471 (2011)

    Google Scholar 

  37. Jiang, J.W., Park, H.S., Rabczuk, T.: Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity. J. Appl. Phys. 114(6), 064307 (2013)

    Google Scholar 

  38. Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29(1), 255 (1966)

    MATH  Google Scholar 

  39. Jiang, J.W.: Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus. Nanotechnology 26(31), 315706 (2015)

    Google Scholar 

  40. Schelling, P.K., Phillpot, S.R., Keblinski, P.: Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 65(14), 144306 (2002)

    Google Scholar 

  41. Kubo, R., Yokota, M., Nakajima, S.: Statistical-mechanical theory of irreversible processes. II. Response to thermal disturbance. J. Phys. Soc. Jpn. 12(11), 1203 (1957)

    MathSciNet  Google Scholar 

  42. Kong, L.T.: Phonon dispersion measured directly from molecular dynamics simulations. Comput. Phys. Commun. 182(10), 2201 (2011)

    Google Scholar 

  43. Kong, L., Lewis, L.J.: Surface diffusion coefficients: substrate dynamics matters. Phys. Rev. B 77(16), 165422 (2008)

    Google Scholar 

  44. Hudon, C., Meyer, R., Lewis, L.J.: Low-frequency vibrational properties of nanocrystalline materials: molecular dynamics simulations of two-dimensional systems. Phys. Rev. B 76(4), 045409 (2007)

    Google Scholar 

  45. Lekien, F., Marsden, J.: Tricubic interpolation in three dimensions. Int. J. Numer. Meth. Eng. 63(3), 455 (2005)

    MathSciNet  MATH  Google Scholar 

  46. Komsa, H.P., Krasheninnikov, A.V.: Native defects in bulk and monolayer MoS2 from first principles. Phys. Rev. B 91(12), 125304 (2015)

    Google Scholar 

  47. Peng, B., Zhang, H., Shao, H., Xu, Y., Zhang, X., Zhu, H.: Towards intrinsic phonon transport in single-layer MoS2. Ann. Phys. 528(6), 504 (2016)

    Google Scholar 

  48. Khadem, M.H., Wemhoff, A.P.: Comparison of Green-Kubo and NEMD heat flux formulations for thermal conductivity prediction using the Tersoff potential. Comput. Mater. Sci. 69, 428 (2013)

    Google Scholar 

  49. Yang, D., Ma, F., Sun, Y., Hu, T., Xu, K.: Influence of typical defects on thermal conductivity of graphene nanoribbons: an equilibrium molecular dynamics simulation. Appl. Surf. Sci. 258(24), 9926 (2012)

    Google Scholar 

  50. Zhang, H., Fonseca, A.F., Cho, K.: Tailoring thermal transport property of graphene through oxygen functionalization. J. Phys. Chem. C 118(3), 1436 (2014)

    Google Scholar 

  51. Evans, W.J., Hu, L., Keblinski, P.: Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination. Appl. Phys. Lett. 96(20), 203112 (2010)

    Google Scholar 

  52. Khan, A., Navid, I., Noshin, M., Uddin, H., Hossain, F., Subrina, S.: Equilibrium molecular dynamics (MD) simulation study of thermal conductivity of graphene nanoribbon: a comparative study on MD potentials. Electronics 4(4), 1109 (2015)

    Google Scholar 

  53. Liu, B., Meng, F., Reddy, C.D., Baimova, J.A., Srikanth, N., Dmitriev, S.V., Zhou, K.: Thermal transport in a graphene-MoS2 bilayer heterostructure: a molecular dynamics study. Rsc Adv. 5(37), 29193 (2015)

    Google Scholar 

  54. Cai, Y., Lan, J., Zhang, G., Zhang, Y.W.: Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 89(3), 035438 (2014)

    Google Scholar 

  55. Jiang, J.W.: Graphene versus MoS2: a short review. Front. Phys. 10(3), 287 (2015)

    Google Scholar 

  56. Hong, Y., Zhu, C., Ju, M., Zhang, J., Zeng, X.C.: Lateral and flexural phonon thermal transport in graphene and stanene bilayers. Phys. Chem. Chem. Phys. 19(9), 6554 (2017)

    Google Scholar 

  57. Navid, I.A., Subrina, S.: Thermal transport characterization of carbon and silicon doped stanene nanoribbon: an equilibrium molecular dynamics study. RSC Adv. 8(55), 31690 (2018)

    Google Scholar 

  58. Che, J., Çağın, T., Deng, W., Goddard III, W.A.: Thermal conductivity of diamond and related materials from molecular dynamics simulations. J. Chem. Phys. 113(16), 6888 (2000)

    Google Scholar 

  59. Ghosh, C.I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., Lau, C.N.: Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92(15), 151911 (2008)

    Google Scholar 

  60. D’Souza, R., Mukherjee, S.: Length-dependent lattice thermal conductivity of single-layer and multilayer hexagonal boron nitride: a first-principles study using the Callaway-Klemens and real-space supercell methods. Phys. Rev. B 96(20), 205422 (2017)

    Google Scholar 

  61. Zhu, L., Zhang, G., Li, B.: Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Phys. Rev. B 90(21), 214302 (2014)

    Google Scholar 

  62. Zhang, X., Xie, H., Hu, M., Bao, H., Yue, S., Qin, G., Su, G.: Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential. Phys. Rev. B 89(5), 054310 (2014)

    Google Scholar 

  63. Sonvane, Y., Gupta, S.K., Raval, P., Lukačević, I., Thakor, P.B.: Length, width and roughness dependent thermal conductivity of graphene nanoribbons. Chem. Phys. Lett. 634, 16 (2015)

    Google Scholar 

  64. Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569 (2011)

    Google Scholar 

  65. Gu, X., Yang, R.: First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene. J. Appl. Phys. 117(2), 025102 (2015)

    Google Scholar 

  66. Pei, Q.X., Zhang, X., Ding, Z., Zhang, Y.Y., Zhang, Y.W.: Thermal stability and thermal conductivity of phosphorene in phosphorene/graphene van der Waals heterostructures. Phys. Chem. Chem. Phys. 19(26), 17180 (2017)

    Google Scholar 

  67. Noshin, M., Khan, A.I., Subrina, S.: Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures. Nanotechnology 29(18), 185706 (2018)

    Google Scholar 

  68. Li, H., Zhang, R.: Vacancy-defect-induced diminution of thermal conductivity in silicene. EPL (Europhys. Lett.) 99(3), 36001 (2012)

    Google Scholar 

  69. Hao, F., Fang, D., Xu, Z.: Mechanical and thermal transport properties of graphene with defects. Appl. Phys. Lett. 99(4), 041901 (2011)

    Google Scholar 

  70. Noshin, M., Khan, A.I., Navid, I.A., Uddin, H.A., Subrina, S.: Impact of vacancies on the thermal conductivity of graphene nanoribbons: A molecular dynamics simulation study. AIP Adv. 7(1), 015112 (2017)

    Google Scholar 

  71. Klemens, P., Gell, M.: Thermal conductivity of thermal barrier coatings. Mater. Sci. Eng. A 245(2), 143 (1998)

    Google Scholar 

  72. Ratsifaritana, C., Klemens, P.: Scattering of phonons by vacancies. Int. J. Thermophys. 8(6), 737 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Subrina.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamun, M.A.Z., Mohaimen, A.A. & Subrina, S. Tunable thermal conductivity of single layer MoS2 nanoribbons: an equilibrium molecular dynamics study. J Comput Electron 19, 957–965 (2020). https://doi.org/10.1007/s10825-020-01524-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01524-3

Keywords

Navigation