Skip to main content
Log in

A non-nuclear \(C^*\)-algebra with the weak expectation property and the local lifting property

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We construct the first example of a \(C^*\)-algebra A with the properties in the title. This gives a new example of non-nuclear A for which there is a unique \(C^*\)-norm on \(A \otimes A^{op}\). This example is of particular interest in connection with the Connes–Kirchberg problem, which is equivalent to the question whether \(C^*({\mathbb {F}}_2)\), which is known to have the LLP, also has the WEP. Our \(C^*\)-algebra A has the same collection of finite dimensional operator subspaces as \(C^*({\mathbb {F}}_2)\) or \(C^*({\mathbb {F}}_\infty )\). In addition our example can be made to be quasidiagonal and of similarity degree (or length) 3. In the second part of the paper we reformulate our construction in the more general framework of a \(C^*\)-algebra that can be described as the limit both inductive and projective for a sequence of \(C^*\)-algebras \((C_n)\) when each \(C_n\) is a subquotient of \(C_{n+1}\). We use this to show that for certain local properties of injective (non-surjective) \(*\)-homomorphisms, there are \(C^*\)-algebras for which the identity map has the same properties as the \(*\)-homomorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arveson, W.: Notes on extensions of \(C^*\)-algebras. Duke Math. J. 44, 329–355 (1977)

    Article  MathSciNet  Google Scholar 

  2. Blackadar, B.: Operator Algebras, Theory of \(C^*\)-Algebras and von Neumann Algebras. Springer, Berlin (2006)

    MATH  Google Scholar 

  3. Blackadar, B., Kirchberg, E.: Generalized inductive limits of finite-dimensional \(C^*\)-algebras. Math. Ann. 307, 343–380 (1997)

    Article  MathSciNet  Google Scholar 

  4. Bourgain, J., Pisier, G.: A construction of \({\cal{L}}^\infty \)-spaces and related Banach spaces. Bol. Soc. Brasil. Mat. 14, 109–123 (1983)

    Article  MathSciNet  Google Scholar 

  5. Brown, N.P., Ozawa, N.: \({{\rm C}}^{*}\)-algebras and finite-dimensional approximations. Graduate Studies in Mathematics, vol. 88. American Mathematical Society, Providence (2008)

  6. Connes, A., Higson, N.: Déformations, morphismes asymptotiques et K-théorie bivariante [Deformations, asymptotic morphisms and bivariant K-theory]. C. R. Acad. Sci. Paris Sér. I Math 311, 101–106 (1990)

  7. Effros, E., Ruan, Z.J.: Operator Spaces. Oxford Univesity Press, Oxford (2000)

    MATH  Google Scholar 

  8. Haagerup, U.: Injectivity and decomposition of completely bounded maps in 11Operator algebras and their connection with Topology and Ergodic Theory. Springer Lect. Notes Math. 1132, 170–222 (1985)

    Article  Google Scholar 

  9. Junge, M., Pisier, G.: Bilinear forms on exact operator spaces and \(B(H)\otimes B(H)\). Geom. Funct. Anal. 5, 329–363 (1995)

    Article  MathSciNet  Google Scholar 

  10. Kirchberg, E.: On nonsemisplit extensions, tensor products and exactness of group \(C^*\)-algebras. Invent. Math. 112, 449–489 (1993)

    Article  MathSciNet  Google Scholar 

  11. Kirchberg, E.: Commutants of unitaries in UHF algebras and functorial properties of exactness. J. Reine Angew. Math. 452, 39–77 (1994)

    MathSciNet  MATH  Google Scholar 

  12. Lance, C.: On nuclear \(C^*\)-algebras. J. Funct. Anal. 12, 157–176 (1973)

    Article  Google Scholar 

  13. Loring, T.: Lifting Solutions to Perturbing Problems in \(C^*\)-Algebras. Fields Institute Monographs. American Mathematics Society, Providence (1997)

    MATH  Google Scholar 

  14. Ozawa, N.: About the QWEP conjecture. Int. J. Math. 15, 501–530 (2004)

    Article  MathSciNet  Google Scholar 

  15. Ozawa, N.: About the Connes embedding conjecture: algebraic approaches. Jpn. J. Math. 8(1), 147–183 (2013)

    Article  MathSciNet  Google Scholar 

  16. Pisier, G.: Counterexamples to a conjecture of Grothendieck. Acta Math. 151, 181–209 (1983)

    Article  MathSciNet  Google Scholar 

  17. Pisier, G.: A simple proof of a theorem of Kirchberg and related results on \(C^*\)-norms. J. Operator Theory 35, 317–335 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Pisier, G.: Remarks on the similarity degree of an operator algebra. Int. J. Math. 12, 403–414 (2001)

    Article  MathSciNet  Google Scholar 

  19. Pisier, G.: Introduction to Operator Space Theory. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  20. Pisier, G.: Remarks on \(B(H)\otimes B(H)\). Proc. Indian Acad. Sci. (Math. Sci.) 116, 423–428 (2006)

  21. Pisier, G.: On a Characterization of the Weak Expectation Property (WEP), arxiv (2019)

  22. Pisier, G.: Tensor products of \(C^*\)-algebras and operator spaces, The Connes–Kirchberg problem, Cambridge University Press, to appear. https://www.math.tamu.edu/~pisier/TPCOS.pdf

  23. Rørdam, M., Larsen, F., Laustsen, N.: An Introduction to K-Theory for \(C^*\)-Algebras. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  24. Rørdam, M., Størmer, E.: Classification of Nuclear \(C^*\)-Algebras. Entropy in Operator Algebras, Encyclopaedia of Mathematical Sciences, vol. 126. Springer, Berlin (2002)

  25. Takesaki, M.: On the crossnorm of the direct product of C*-algebras. Tohoku Math. J 16, 111–122 (1964)

    Article  MathSciNet  Google Scholar 

  26. Takesaki, M.: Theory of Operator Algebras, vol. I. Springer, Berlin (1979)

    Book  Google Scholar 

  27. Takesaki, M.: Theory of Operator Algebras, vol. II-III. Springer, Berlin (2003)

    Book  Google Scholar 

Download references

Acknowledgements

I thank the referee for his careful reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Pisier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisier, G. A non-nuclear \(C^*\)-algebra with the weak expectation property and the local lifting property. Invent. math. 222, 513–544 (2020). https://doi.org/10.1007/s00222-020-00977-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-020-00977-4

Mathematics Subject Classification

Navigation