Skip to main content

Advertisement

Log in

Nano-Catalysts in Ozone-Based Advanced Oxidation Processes for Wastewater Treatment

  • Water Pollution (G Toor and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pollution is now being varied with huge contaminants in wastewater especially with kind of recalcitrants that are emerging pollutants needed new advanced resolutions to mineralize them completely. Thus, the investigation of technology and technique processes is very important for research and development. Moreover, these manual, research, and application of the advanced oxidation processes especially using ozone for water and wastewater are concentrated and appreciated in over the world. Recently, nanoparticles have researched into subjects to enhance new, advanced technology for many domains such as environment, biology, agriculture, and medicine. Hence, the purpose of this review is to summarize the important role of nano-particulars as nano-catalysts in ozone-based advanced oxidation processes for wastewater treatment and evaluate how to contribute into ozone-based advance oxidation processes by nano-catalysts for wastewater treatment.

Recent Findings

The advanced oxidation processes (AOPs) for wastewater treatment nowadays are being appreciated in the twenty-first century when economy development day by day is concentrated extremely in industry, agriculture, and pharmacy leading to various pollutants in the environment. According to these developments, amount of various contaminants is discharged in wastewater; thus, investigation of advance technology based on nano-catalysts combining the ozonation will meet the demands for wastewater treatment.

Summary

This review found potentials and prospects of nano-catalysts applied in the catalytic ozonation process for wastewater treatment. Efficiency of some well-known nano-catalysts with analytical properties for catalytic ozonation is also evaluated. Mechanisms of this process are identified to easily approach the catalytic ozonation using nano-materials for wastewater treatment in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

\( \frac{{\mathit{\mathsf{dC}}}_{\mathit{\mathsf{p}}}}{\mathit{\mathsf{dt}}} \) :

Reaction rate of reaction in homogeneous or heterogeneous units (mol L−1 s−1)

\( {\mathit{\mathsf{k}}}_{\mathsf{1}} \) :

Second-order reaction rate constant of direct reaction of O3 and pollutant (Lmol−1 s−1)

\( {\mathit{\mathsf{C}}}_{\mathit{\mathsf{P}}} \) :

Concentration of pollutant (mol L−1)

\( {\mathit{\mathsf{C}}}_{{\mathit{\mathsf{O}}}_{\mathsf{3}}} \) :

Concentration of ozone (mol L−1)

\( {\mathit{\mathsf{k}}}_{\mathsf{2}} \) :

Second-order reaction rate constant of indirect reaction of O3 and pollutant (L mol−1 s−1)

\( {\mathit{\mathsf{C}}}_{\mathit{\mathsf{OH}}{}^{\circ}} \) :

Concentration of hydroxyal radical (mol L−1)

\( \frac{{\mathit{\mathsf{dC}}}_{\mathit{\mathsf{OH}}{}^{\circ}}}{\mathit{\mathsf{dt}}} \) :

Reaction rate of reaction of pollutant and OH° (mol L−1 s−1)

\( {\mathit{\mathsf{k}}}_{\mathit{\mathsf{h}}} \) :

Second-order reaction rate constant of the homogeneous reaction (L mol−1 s−1)

\( \mathit{\mathsf{t}} \) :

Time (s)

k h' :

Second-order reaction rate constant of the homogeneous nano-catalytic ozonation (L mol−1 s−1)

\( {\mathit{\mathsf{k}}}_{\mathsf{3}} \) :

The kinetic constants of reaction of CAT and pollutant (L mol−1 s−1)

CCAT :

Concentration of Catalyst (mol L−1)

\( {\mathit{\mathsf{k}}}_{\mathsf{4}} \) :

Second-order reaction rate constant of the heterogeneous nano-catalytic ozonation with O3 (L mol−1 s−1)

\( {\mathit{\mathsf{k}}}_{\mathsf{5}} \) :

Second-order reaction rate constant of the heterogeneous nano-catalytic ozonation with OH° (L mol−1 s−1)

khe :

Second-order reaction rate constant of the heterogeneous reaction (L mol−1 s−1)

\( {\mathit{\mathsf{k}}}_{\mathit{\mathsf{over}}} \) :

Second-order reaction rate constant of the both of the homogeneous and heterogeneous reactions (L mol−1 s−1)

References

  1. Lu H, Wang J, Stoller M, et al. An overview of nanomaterials for water and wastewater treatment. In: Adv. Mater. Sci. Eng. 2016. https://www.hindawi.com/journals/amse/2016/4964828/. Accessed 7 May 2018

  2. Lekota MW, Dimpe KM, Nomngongo PN. MgO-ZnO/carbon nanofiber nanocomposite as an adsorbent for ultrasound-assisted dispersive solid-phase microextraction of carbamazepine from wastewater prior to high-performance liquid chromatographic detection. J Anal Sci Technol. 2019;10:25. https://doi.org/10.1186/s40543-019-0185-1.

    Article  CAS  Google Scholar 

  3. Mahadik S. Applications of nanotechnology in water and waste water treatment. AADYA - J Manag Technol JMT. 2017;7:91–5.

    Google Scholar 

  4. Cheng S-W, Li Y-H, Yuan C-S, Tsai PY, Shen HZ, Hung CH. An innovative advanced oxidation Technology for Effective decomposition of formaldehyde by combining Iron modified nano-TiO2 (Fe/TiO2) photocatalytic degradation with ozone oxidation. Aerosol Air Qual Res. 2018;18:3220–33. https://doi.org/10.4209/aaqr.2018.05.0156.

    Article  CAS  Google Scholar 

  5. Ndabankulu VO, Maddila S, Jonnalagadda SB. Ozone facilitated degradation of caffeine using Ce-TiO2 catalyst. J Environ Sci Health B. 2019;54:138–46. https://doi.org/10.1080/03601234.2018.1530549.

    Article  CAS  Google Scholar 

  6. Savage N, Diallo MS. Nanomaterials and water purification: opportunities and challenges. J Nanopart Res. 2005;7:331–42. https://doi.org/10.1007/s11051-005-7523-5.

    Article  CAS  Google Scholar 

  7. Legube B. Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catal Today. 1999;53:61–72. https://doi.org/10.1016/S0920-5861(99)00103-0.

    Article  CAS  Google Scholar 

  8. Fontanier V, Farines V, Albet J, Baig S, Molinier J. Oxidation of organic pollutants of water to mineralization by catalytic ozonation. Ozone Sci Eng. 2005;27:115–28. https://doi.org/10.1080/01919510590925239.

    Article  CAS  Google Scholar 

  9. Zhao L, Sun Z, Ma J, Liu H. Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution. Environ Sci Technol. 2009;43:2047–53. https://doi.org/10.1021/es803125h.

    Article  CAS  Google Scholar 

  10. Moussavi G, Khavanin A, Alizadeh R. The investigation of catalytic ozonation and integrated catalytic ozonation/biological processes for the removal of phenol from saline wastewaters. J Hazard Mater. 2009;171:175–81. https://doi.org/10.1016/j.jhazmat.2009.05.113.

    Article  CAS  Google Scholar 

  11. Amin MT, Alazba AA, Manzoor U. A review of removal of pollutants from water/wastewater using different types of nanomaterials. In: Adv. Mater. Sci. Eng. 2014. https://www.hindawi.com/journals/amse/2014/825910/

  12. Stasinakis AS. Use of selected advanced oxidation processes (AOPs) for wastewater treatment - a mini review. Glob NEST J. 2008;10:376–85. https://doi.org/10.30955/gnj.000598.

    Article  Google Scholar 

  13. Munter R. Advanced oxidation processes–current status and prospects. Proc Est Acad Sci Chem. 2001;50:59–80.

    CAS  Google Scholar 

  14. Mizuno T, Han F, Xu J, Kusuda Y, Tsuno H. Performance evaluation of ozonation and an ozone/hydrogen peroxide process toward development of a new sewage treatment process—focusing on organic compounds and emerging contaminants. Ozone Sci Eng. 2018;40:339–55. https://doi.org/10.1080/01919512.2018.1435110.

    Article  CAS  Google Scholar 

  15. Glaze WH, Kang J-W, Chapin DH. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng. 1987;9:335–52. https://doi.org/10.1080/01919518708552148.

    Article  CAS  Google Scholar 

  16. Mondal K, Sharma A (2014). Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials – a mini-review.

    Google Scholar 

  17. Naumann RJ. Introduction to the physics and chemistry of materials: CRC Press; 2008.

  18. H Navon D (1975) Electronic materials and devices by David H. Navon: Fair (1975). https://www.abebooks.co.uk/Electronic-Materials-Devices-David-H-Navon/12452268774/bd.

  19. I. Gersten J, W.Smith F (2001) The physics and chemistry of materials | Wiley. In: Wiley.com. https://www.wiley.com/en-us/The Physics and Chemistry of Materials-p-9780471057949.

  20. Kittel. Introduction to solid state physics, 7th edit: Wiley India Pvt. Limited; 2007.

  21. Staehelin J, Hoigne J. Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environ Sci Technol. 1982;16:676–81.

    Article  CAS  Google Scholar 

  22. Hoigné J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water—I. Water Res. 1983;17:173–83. https://doi.org/10.1016/0043-1354(83)90098-2.

    Article  Google Scholar 

  23. Haag WR, Yao CCD. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Env Sci Technol. 1992;26:1005–13.

    Article  CAS  Google Scholar 

  24. Acero JL, von Gunten U. Influence of carbonate on the ozone/hydrogen peroxide based advanced oxidation process for drinking water treatment. Ozone Sci Eng. 2000;22:305–28. https://doi.org/10.1080/01919510008547213.

    Article  CAS  Google Scholar 

  25. Bidhendi GRN, Hoveidi H, Jafari HR, et al. Application of ozonation in drinking water disinfection based on an environmental management strategy approach using swot method. Iranian Journal of Environmental Health Science and Engineering. 2006;3(1).

  26. Rajeswari R, Kanmani S. TiO2-based heterogeneous photocatalytic treatment combined with ozonation for carbendazim degradation. Iran J Environ Health Sci Eng. 2009;6(2):61–6.

    CAS  Google Scholar 

  27. Nawrocki J, Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation. Appl Catal B Environ. 2010;99:27–42. https://doi.org/10.1016/j.apcatb.2010.06.033.

    Article  CAS  Google Scholar 

  28. Hien NT, Nguyen LH, Van HT, et al. Heterogeneous catalyst ozonation of direct black 22 from aqueous solution in the presence of metal slags originating from industrial solid wastes. Sep Purif Technol. 2020;233:115961. https://doi.org/10.1016/j.seppur.2019.115961.

    Article  CAS  Google Scholar 

  29. Van HT, Nguyen LH, Hoang TK, et al. Heterogeneous Fenton oxidation of paracetamol in aqueous solution using iron slag as a catalyst: degradation mechanisms and kinetics. Environ Technol Innov. 2020;18:100670. https://doi.org/10.1016/j.eti.2020.100670.

    Article  Google Scholar 

  30. Van HT, Nguyen LH, Hoang TK, et al. Using FeO-constituted iron slag wastes as heterogeneous catalyst for Fenton and ozonation processes to degrade reactive red 24 from aqueous solution. Sep Purif Technol. 2019;224:431–42. https://doi.org/10.1016/j.seppur.2019.05.048.

    Article  CAS  Google Scholar 

  31. Dong Y, He K, Zhao B, Yin Y, Yin L, Zhang A. Catalytic ozonation of azo dye active brilliant red X-3B in water with natural mineral brucite. Catal Commun. 2007;8:1599–603. https://doi.org/10.1016/j.catcom.2007.01.016.

    Article  CAS  Google Scholar 

  32. Erol F, Özbelge TA. Catalytic ozonation with non-polar bonded alumina phases for treatment of aqueous dye solutions in a semi-batch reactor. Chem Eng J. 2008;139:272–83. https://doi.org/10.1016/j.cej.2007.07.100.

    Article  CAS  Google Scholar 

  33. Hammad Khan M, Jung JY. Ozonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phase. Chemosphere. 2008;72:690–6. https://doi.org/10.1016/j.chemosphere.2008.02.037.

    Article  CAS  Google Scholar 

  34. Chun Hu, Shengtao Xing, Jiuhui Qu and, He H. Catalytic ozonation of herbicide 2,4-D over cobalt oxide supported on mesoporous zirconia. 2008. https://pubs.acs.org/doi/pdf/10.1021/jp711463e. Accessed 17 Mar 2020.

  35. Liotta LF, Gruttadauria M, Di Carlo G, et al. Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J Hazard Mater. 2009;162:588–606. https://doi.org/10.1016/j.jhazmat.2008.05.115.

    Article  CAS  Google Scholar 

  36. Zhao L, Ma J, Sun Z, Zhai X. Mechanism of influence of initial pH on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation | Environmental Science & Technology. Env Sci Technol. 2008;42:4002–7. https://doi.org/10.1021/es702926q.

    Article  CAS  Google Scholar 

  37. Asgari G, Seidmohammadi A, Esrafili A, Faradmal J, Noori Sepehr M, Jafarinia M. The catalytic ozonation of diazinon using nano-MgO@CNT@Gr as a new heterogenous catalyst: the optimization of effective factors by response surface methodology. RSC Adv. 2020;10:7718–31. https://doi.org/10.1039/C9RA10095D.

    Article  CAS  Google Scholar 

  38. Cloete TE, et al. Nanotechnology in water treatment applications: Caister Academic Press Press; 2010.

  39. Qu X, Brame J, Li Q, Alvarez PJJ. Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res. 2013;46:834–43. https://doi.org/10.1021/ar300029v.

    Article  CAS  Google Scholar 

  40. McGuinness NB, Garvey M, Whelan A, et al. Nanotechnology solutions for global water challenges. In: Ahuja S, de Andrade JB, Dionysiou DD, et al., editors. Water challenges and solutions on a global scale. Washington, DC: American Chemical Society; 2015. p. 375–411.

    Chapter  Google Scholar 

  41. Amin MT, Alazba AA, Manzoor U. A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng. 2014;2014:1–24. https://doi.org/10.1155/2014/825910.

    Article  CAS  Google Scholar 

  42. Huang W-J, Fang G-C, Wang C-C. A nanometer-ZnO catalyst to enhance the ozonation of 2,4,6-trichlorophenol in water. Colloids Surf Physicochem Eng Asp. 2005;260:45–51. https://doi.org/10.1016/j.colsurfa.2005.01.031.

    Article  CAS  Google Scholar 

  43. Yang Y, Ma J, Qin Q, Zhai X. Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. J Mol Catal Chem. 2007;267:41–8. https://doi.org/10.1016/j.molcata.2006.09.010.

    Article  CAS  Google Scholar 

  44. Kwon S, Fan M, Cooper AT, Yang H. Photocatalytic applications of micro- and Nano-TiO 2 in environmental engineering. Crit Rev Environ Sci Technol. 2008;38:197–226. https://doi.org/10.1080/10643380701628933.

    Article  CAS  Google Scholar 

  45. Khataee AR, Vatanpour V, Amani Ghadim AR. Decolorization of C.I. acid blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: a comparative study. J Hazard Mater. 2009;161:1225–33. https://doi.org/10.1016/j.jhazmat.2008.04.075.

    Article  CAS  Google Scholar 

  46. Moussavi G, Khavanin A, Alizadeh R. The integration of ozonation catalyzed with MgO nanocrystals and the biodegradation for the removal of phenol from saline wastewater. Appl Catal B Environ. 2010;97:160–7. https://doi.org/10.1016/j.apcatb.2010.03.036.

    Article  CAS  Google Scholar 

  47. Bach A, Zach-Maor A, Semiat R. Characterization of iron oxide nanocatalyst in mineralization processes. Desalination. 2010;262:15–20. https://doi.org/10.1016/j.desal.2010.05.016.

    Article  CAS  Google Scholar 

  48. Tabatabaei SM, Dastmalchi S, Mehrizad A, Gharbani P. Enhancement of 4-nitrophenol ozonation in water by nano ZnO catalyst. Iran. J. Environ. Health. Sci. Eng. 2011;8(4).

  49. Tabatabaei SM, Mehrizad A, Gharbani P. Nano-catalytic ozonation of 4-nitrochlorobenzene in aqueous solutions. E-J Chem. 2012;9:1968–75. https://doi.org/10.1155/2012/696418.

    Article  CAS  Google Scholar 

  50. Zhu Y, et al. Study on catalytic ozone oxidation with Nano-TiO2 modified membrane for treatment of municipal wastewater. J Biomim Biomater Tissue Eng. 2013. https://doi.org/10.4172/1662-100X.1000113.

  51. Rafiee M, Bashiri H. Kinetic Monte Carlo simulation of 4-nitrophenol ozonation in the presence of ZnO nanocatalyst. Russ J Phys Chem A. 2015;89:982–6. https://doi.org/10.1134/S0036024415060205.

    Article  CAS  Google Scholar 

  52. Biard P-F, Werghi B, Soutrel I, Orhand R, Couvert A, Denicourt-Nowicki A, et al. Efficient catalytic ozonation by ruthenium nanoparticles supported on SiO 2 or TiO 2 : towards the use of a non-woven fiber paper as original support. Chem Eng J. 2016;289:374–81. https://doi.org/10.1016/j.cej.2015.12.051.

    Article  CAS  Google Scholar 

  53. Raman CD, Kanmani S. Textile dye degradation using nano zero valent iron: a review. J Environ Manag. 2016;177:341–55. https://doi.org/10.1016/j.jenvman.2016.04.034.

    Article  CAS  Google Scholar 

  54. Bethi B, Sonawane SH, Bhanvase BA, Gumfekar SP. Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem Eng Process Process Intensif. 2016;109:178–89. https://doi.org/10.1016/j.cep.2016.08.016.

    Article  CAS  Google Scholar 

  55. Wang B, Xiong X, Ren H, Huang Z. Preparation of MgO nanocrystals and catalytic mechanism on phenol ozonation. RSC Adv. 2017;7:43464–73. https://doi.org/10.1039/C7RA07553G.

    Article  CAS  Google Scholar 

  56. Bahrami-asl F, Kermani M, Salahshour-Arian S, et al. Catalytic ozonation of azo dye reactive red 120 in the presence of MgO nanoparticles. J Health Field. 2017;2.

  57. Shokrollahzadeh S, Abassi M, Ranjbar M. A new nano-ZnO/perlite as an efficient catalyst for catalytic ozonation of azo dye. Environ Eng Res. 2018;24:513–20. https://doi.org/10.4491/eer.2018.322.

    Article  Google Scholar 

  58. Alinejad A, Akbari H, Ghaderpoori M, Jeihooni AK, Adibzadeh A. Catalytic ozonation process using a MgO nano-catalyst to degrade methotrexate from aqueous solutions and cytotoxicity studies in human lung epithelial cells (A549) after treatment. RSC Adv. 2019;9:8204–14. https://doi.org/10.1039/C9RA00320G.

    Article  CAS  Google Scholar 

  59. Duong THY, Nguyen TN, Oanh HT, et al. Synthesis of magnesium oxide nanoplates and their application in nitrogen dioxide and sulfur dioxide adsorption. In: J. Chem. 2019. https://www.hindawi.com/journals/jchem/2019/4376429/.

  60. Mehrizad A, Gharbani P. Removal of methylene blue from aqueous solution using Nano-TiO2/UV process: optimization by response surface methodology. Prog Color Colorants Coat. 2016;9:135–43.

    CAS  Google Scholar 

  61. Sobana N, Selvam K, Swaminathan M. Optimization of photocatalytic degradation conditions of direct red 23 using nano-Ag doped TiO2. Sep Purif Technol. 2008;62:648–53. https://doi.org/10.1016/j.seppur.2008.03.002.

    Article  CAS  Google Scholar 

  62. Shafieiyoun S, et al. Organic load removal of landfill leachate by Fenton process using nano sized zero valent iron particles. Singapore: IPCBEE vol.6 IACSIT Press; 2011.

    Google Scholar 

  63. Aksu SK, Er SGC, et al. Investigations on solar degradation of acid orange 7 (C.I. 15510) in textile wastewater with micro- and nanosized titanium dioxide. Turkish J Eng Env Sci. 2010;34(2010):275–9. https://doi.org/10.3906/muh-1005-6.

    Article  CAS  Google Scholar 

  64. Yang Y, et al. Surface modification of (001) facets dominated TiO2 with ozone for adsorption and photocatalytic degradation of gaseous toluene. Chin J Chem Phys. 2019. https://doi.org/10.1063/1674-0068/cjcp19030622.

  65. Iskandar F, Nandiyanto ABD, Yun KM, Hogan CJ, Okuyama K, Biswas P. Enhanced photocatalytic performance of brookite TiO2 macroporous particles prepared by spray drying with colloidal templating. Adv Mater. 2007;19:1408–12. https://doi.org/10.1002/adma.200601822.

    Article  CAS  Google Scholar 

  66. Bavykin DV, Friedrich JM, Walsh FC. Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater. 2006;18:2807–24. https://doi.org/10.1002/adma.200502696.

    Article  CAS  Google Scholar 

  67. Koelsch M, Cassaignon S, Guillemoles JF, Jolivet JP. Comparison of optical and electrochemical properties of anatase and brookite Tio2 synthesized by the sol–gel method. Thin Solid Films. 2002;403-404:312–9. https://doi.org/10.1016/S0040-6090(01)01509-7.

    Article  CAS  Google Scholar 

  68. Allemane H, Delouane B, Paillard H, Legube B. Comparative efficiency of three systems (O3, O3/H2O2, and O3/TiO2) for the oxidation of natural organic matter in water. Ozone Sci Eng. 1993;15:419–32. https://doi.org/10.1080/01919512.1993.10555733.

    Article  CAS  Google Scholar 

  69. Alver A, Basturk E. Removal of aspartame by catalytic ozonation by nano-TiO2 coated pumice. Desalination Water Treat. 2019;152:268–75. https://doi.org/10.5004/dwt.2019.24016.

    Article  CAS  Google Scholar 

  70. Qi L, et al. Degradation of 4-chlorophenol by catalytic ozonation using γ-Al2O3/TiO2 supportedmanaganese oxides in aqueous solution. Int J Electrochem Sci. 2013;8:5457–68.

    CAS  Google Scholar 

  71. Li L, Zhu W, Zhang P, Chen Z, Han W. Photocatalytic oxidation and ozonation of catechol over carbon-black-modified nano-TiO2 thin films supported on Al sheet. Water Res. 2003;37:3646–51. https://doi.org/10.1016/S0043-1354(03)00269-0.

    Article  CAS  Google Scholar 

  72. Einaga H, Maeda N, Nagai Y. Comparison of catalytic properties of supported metal oxides for benzene oxidation using ozone. Catal Sci Technol. 2015;5:3147–58. https://doi.org/10.1039/C5CY00315F.

    Article  CAS  Google Scholar 

  73. Bahrami-asl F, Kermani M, Salahshour-Arian S, et al. Catalytic ozonation of azo dye reactive red 120 in the presence of MgO nanoparticles. J Health Field. 2017;2(2):Summer 2014.

    Google Scholar 

  74. Guo Y, Yang L, Cheng X, Wang X. The application and reaction mechanism of catalytic ozonation in water treatment. J Environ Anal Toxicol. 2012;2:1–6. https://doi.org/10.4172/2161-0525.1000150.

    Article  CAS  Google Scholar 

  75. Khuntia S, Sinha MK, Singh P. Theoretical and experimental investigation of the mechanism of the catalytic ozonation process by using a manganese-based catalyst. Environ Technol. 2019:1–8. https://doi.org/10.1080/09593330.2019.1640800.

  76. Wang B, Zhang H, Wang F, Xiong X, Tian K, Sun Y, et al. Application of heterogeneous catalytic ozonation for refractory organics in wastewater. Catalysts. 2019;9:241. https://doi.org/10.3390/catal9030241.

    Article  CAS  Google Scholar 

  77. Wang J, Quan X, Chen S, Yu H, Chen Y. Performing homogeneous catalytic ozonation using heterogeneous Mn2+−bonded oxidized carbon nanotubes by self-driven pH variation induced reversible desorption and adsorption of Mn2+. Environ Sci Nano. 2019;6:1932–40. https://doi.org/10.1039/C9EN00204A.

    Article  CAS  Google Scholar 

  78. Buxton G. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ·OH/·O− in aqueous solution. J Phys Chem Ref Data. 1988;17:513–886. https://doi.org/10.1063/1.5558050.

    Article  CAS  Google Scholar 

  79. Kasprzyk-Hordern B, Ziółek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catal B Environ. 2003;46:639–69. https://doi.org/10.1016/S0926-3373(03)00326-6.

    Article  CAS  Google Scholar 

  80. Sable SS, Shah KJ, Chiang P-C, Lo S-L. Catalytic oxidative degradation of phenol using iron oxide promoted sulfonated-ZrO2 by advanced oxidation processes (AOPs). J Taiwan Inst Chem Eng. 2018;91:434–40. https://doi.org/10.1016/j.jtice.2018.06.030.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Thom Dang.

Ethics declarations

Competing Interests

The authors declare that they are no competing interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, T.T., Do, V.M. & Trinh, V.T. Nano-Catalysts in Ozone-Based Advanced Oxidation Processes for Wastewater Treatment. Curr Pollution Rep 6, 217–229 (2020). https://doi.org/10.1007/s40726-020-00147-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-020-00147-3

Keywords

Navigation