Skip to main content
Log in

Transformation of Commodity Poly(hydroxyether of bisphenol A) into Vitrimers via Post Crosslinking with Hindered Urea Bonds

  • Rapid Communication
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this contribution, we reported the preparation of vitrimers by using commodity thermoplastics via post crosslinking with hindered urea bonds (HUBs). First, three hindered urea diisocyanates (HUDIs) were synthesized via the reactions of N,N’-di-tert-butylethylenediamine, N,N’-diethylethylenediamine, and piperazine with isophorone diisocyanate (IPDI). Thereafter, these HUDIs were used as the crosslinking agents to crosslink poly(hydroxyether of bisphenol A) (PH), a commodity thermoplastics. Fourier transform infrared (FTIR) spectroscopy and dynamic mechanical thermal analyses (DMTA) indicated that the PH thermosets were successfully obtained. It was found that the thermosets displayed the behavior of vitrimers. The PH thermosets can be reprocessed at elevated temperature without using catalyst and the mechanical strengths of vitrimers were recovered as high as 95%. The reprocessing properties are attributable to dynamic exchange reaction of hindered urea bonds, contingent on types of hindered urea bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science2011, 334, 965–968.

    Article  CAS  Google Scholar 

  2. Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A Thermally re-mendable cross-linked polymeric material. Science2002, 295, 1698–1702.

    Article  CAS  Google Scholar 

  3. Tian, Q.; Yuan, Y. C.; Rong, M. Z.; Zhang, M. Q. A thermally remendable epoxy resin. J. Mater. Chem.2009, 19, 1289–1296.

    Article  CAS  Google Scholar 

  4. Yu, S.; Zhang, R.; Wu, Q.; Chen, T.; Sun, P. Bio-inspired high-performance and recyclable cross-linked polymers. Adv. Mater. 2013, 25, 4912–4917.

    Article  CAS  Google Scholar 

  5. Polgar, L. M.; van Duin, M.; Broekhuis, A. A.; Picchioni, F. Use of diels-alder chemistry for thermoreversible cross-linking of rubbers: the next step toward recycling of rubber products? Macromolecules2015, 48, 7096–7105.

    Article  CAS  Google Scholar 

  6. Rekondo, A.; Martin, R.; Ruiz De Luzuriaga, A.; Cabanero, G.; Grande, H. J.; Odriozola, I. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz.2014, 1, 237–240.

    Article  CAS  Google Scholar 

  7. Lei, Z. Q.; Xiang, H. P.; Yuan, Y. J.; Rong, M. Z.; Zhang, M. Q. Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds. Chem. Mater.2014, 26, 2038–2046.

    Article  CAS  Google Scholar 

  8. Ruiz De Luzuriaga, A.; Martin, R.; Markaide, N.; Rekondo, A.; Cabanero, G.; Rodriguez, J.; Odriozola, I. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater. Horiz.2016, 3, 241–247.

    Article  Google Scholar 

  9. Deng, J.; Kuang, X.; Liu, R.; Ding, W.; Wang, A. C.; Lai, Y.; Dong, K.; Wen, Z.; Wang, Y.; Wang, L.; Qi, H. J.; Zhang, T.; Wang, Z. L. Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv. Mater.2018, 30, 1705918.

    Article  Google Scholar 

  10. Ruiz De Luzuriaga, A.; Matxain, J. M.; Ruiperez, F.; Martin, R.; Asua, J. M.; Cabanero, G.; Odriozola, I. Transient mechanochromism in epoxy vitrimer composites containing aromatic disulfide crosslinks. J. Mater. Chem. C2016, 4, 6220–6223.

    Article  Google Scholar 

  11. Wang, Z.; Tian, H.; He, Q.; Cai, S. Reprogrammable, reprocessible, and self-healable liquid crystal elastomer with exchangeable disulfide bonds. ACS Appl. Mater. Interfaces2017, 9, 33119–33128.

    Article  CAS  Google Scholar 

  12. Zhou, F.; Guo, Z.; Wang, W.; Lei, X.; Zhang, B.; Zhang, H.; Zhang, Q. Preparation of self-healing, recyclable epoxy resins and low-electrical resistance composites based on double-disulfide bond exchange. Compos. Sci. Technol.2018, 167, 79–85.

    Article  CAS  Google Scholar 

  13. Imbernon, L.; Oikonomou, E. K.; Norvez, S.; Leibler, L. Chemically crosslinked yet reprocessable epoxidized natural rubber via thermo-activated disulfide rearrangements. Polym. Chem. 2015, 6, 4271–4278.

    Article  CAS  Google Scholar 

  14. Liu, W. X.; Yang, Z.; Qiao, Z.; Zhang, L.; Zhao, N.; Luo, S.; Xu, J. Dynamic multiphase semi-crystalline polymers based on thermally reversible pyrazole-urea bonds. Nat. Commun. 2019, 10, 4753.

    Article  Google Scholar 

  15. Chen, J. H.; An, X. P.; Li, Y. D.; Wang, M.; Zeng, J. B. Reprocessible epoxy networks with tunable physical properties: synthesis, stress relaxation and recyclability. Chinese J. Polym. Sci. 2018, 36, 641–648.

    Article  CAS  Google Scholar 

  16. Amamoto, Y.; Kamada, J.; Otsuka, H.; Takahara, A.; Matyjaszewski, K. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew. Chem. Int. Ed.2011, 50, 1660–1663.

    Article  CAS  Google Scholar 

  17. Fortman, D. J.; Brutman, J. P.; Cramer, C. J.; Hillmyer, M. A.; Dichtel, W. R. Mechanically-activated, catalyst-free polyhydroxyurethane vitrimers. J. Am. Chem. Soc.2015, 137, 14019–14022.

    Article  CAS  Google Scholar 

  18. Chen, X.; Li, L.; Wei, T.; Venerus, D. C.; Torkelson, J. M. Reprocessable polyhydroxyurethane network composites: effect of filler surface functionality on cross-link density recovery and stress relaxation. ACS Appl. Mater. Interfaces2019, 11, 2398–2407.

    Article  CAS  Google Scholar 

  19. Liu, W. X.; Zhang, C.; Zhang, H.; Zhao, N.; Yu, Z. X.; Xu, J. Oxime-based and catalyst-free dynamic covalent polyurethanes. J. Am. Chem. Soc.2017, 139, 8678–8684.

    Article  CAS  Google Scholar 

  20. Snyder, R. L.; Fortman, D. J.; De Hoe, G. X.; Hillmyer, M. A.; Dichtel, W. R. Reprocessable acid-degradable polycarbonate vitrimers. Macromolecules2018, 51, 389–397.

    Article  CAS  Google Scholar 

  21. Denissen, W.; Rivero, G.; Nicolay, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. Vinylogous urethane vitrimers. Adv. Funct. Mater.2015, 25, 2451–2457.

    Article  CAS  Google Scholar 

  22. Chao, A.; Negulescu, I.; Zhang, D. Dynamic covalent polymer networks based on degenerative imine bond exchange: tuning the malleability and self-healing properties by solvent. Macromolecules2016, 49, 6277–6284.

    Article  CAS  Google Scholar 

  23. Yue, L.; Bonab, V. S.; Yuan, D.; Patel, A.; Karimkhani, V.; Manas-Zloczower, I. Vitrimerization: a novel concept to reprocess and recycle thermoset waste aia dynamic chemistry. Global Challenges2019, 1800076.

    Google Scholar 

  24. Ying, H.; Zhang, Y.; Cheng, J. Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun.2014, 5, 3218.

    Article  Google Scholar 

  25. Röttger, M.; Domenech, T.; van der Weegen, R.; Breuillac, A.; Nicolay, R.; Leibler, L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science2017, 356, 62–65.

    Article  Google Scholar 

  26. Wang, Z.; Gu, Y.; Ma, M.; Chen, M. Strong, reconfigurable, and recyclable thermosets cross-linked by polymer-polymer dynamic interaction based on commodity thermoplastics. Macromolecules2020, 53, 956–964.

    Article  CAS  Google Scholar 

  27. Guo, H.; Yue, L.; Rui, G.; Manas-Zloczower, I. Recycling poly(ethylene-vinyl acetate) with improved properties through dynamic cross-linking. Macromolecules2020, 53, 458–464.

    Article  CAS  Google Scholar 

  28. Gao, Y.; Liu, W.; Zhu, S. Reversible shape memory polymer from semicrystalline poly(ethylene-co-vinyl acetate) with dynamic covalent polymer networks. Macromolucules2018, 51, 8956–8963.

    Article  CAS  Google Scholar 

  29. Bugel, T. E.; Norwalk, S.; Snedeker, R. H. Phenoxy resin-a new thermoplastic adhesive, in Adhesion, West Conshohocken, PA: ASTM International, 1964, pp.87–95.

    Chapter  Google Scholar 

  30. Zheng, S.; Huang, J.; Zhong, Z.; He, G.; Guo, Q. A polymer of bisphenol a and bisphenol a diglycidyl ether and its blends with poly(styrene-co-acrylonitrile): in situ polymerization preparation, morphology, and mechanical properties. J. Polym. Sci., Part A: Polym. Chem.1999, 37, 525–532.

    Article  CAS  Google Scholar 

  31. Hutchby, M.; Houlden, C. E.; Ford, G.; Tyler, S. N. G.; Gagné, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Hindered ureas as masked isocyanates: facile carbamoylation of nucleophiles under neutral conditions. Angew. Chem. Int. Ed.2009, 48, 8721–8724.

    Article  CAS  Google Scholar 

  32. Zhao, D.; Moore, J. S. Nucleation-elongation: a mechanism for cooperative supramolecular polymerization. Org. Biomol. Chem. 2003, 1, 3471–3491.

    Article  CAS  Google Scholar 

  33. Fortman, D. J.; Brutman, J. P.; Cramer, C. J.; Hillmyer, M. A.; Dichtel, W. R. Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. J. Am. Chem. Soc.2016, 138, 14019–14022.

    Google Scholar 

  34. Ward, I. M. in Mechanical properties of solid polymers, Wiley, New York, 2nd Ed., 1983.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51973113, 51133003, and 21774078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sixun Zheng.

Electronic Supplementary Information

10118_2020_2457_MOESM1_ESM.pdf

Transformation of Commodity Poly(hydroxyether of bisphenol A) into Vitrimers via Post Crosslinking with Hindered Urea Bonds

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Zhao, B., Mei, H. et al. Transformation of Commodity Poly(hydroxyether of bisphenol A) into Vitrimers via Post Crosslinking with Hindered Urea Bonds. Chin J Polym Sci 38, 915–920 (2020). https://doi.org/10.1007/s10118-020-2457-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2457-z

Keywords

Navigation