Skip to main content
Log in

Improved specific capacitance of pitch-based activated carbon by KOH/KMnO4 agent for supercapacitors

  • Rapid Communications
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The pitch-based activated carbons were prepared with KOH/KMnO4 as a multiple function activation agent to increase the specific capacitance of a supercapacitor electrode active material. And the porous structure and electrochemical properties of activated carbon were analyzed on varying amounts of KMnO4. KMnO4 was decomposed into K2O, MnO, and O2 at the activation temperature of KOH, and MnO was introduced to activated carbon. K2O/O2 reacts with a surrounding pitch to generate micropores and forms a pathway that exposes MnO to the outside. It also affects to the specific surface area of activated carbon like KOH chemical activation. The enhanced specific surface area and introduced MnO in activated carbon led to a 28.9% increase in specific capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Jiang C, Zou Z (2020) Waste polyurethane foam filler-derived mesoporous carbons as superior electrode materials for EDLCs and Zn-ion capacitors. Diam Relat Mater 101:107603. https://doi.org/10.1016/j.diamond.2019.107603

    Article  CAS  Google Scholar 

  2. Kim HS, Abbas MA, Kang MS, Kyung H, Bang JH, Yoo WC (2019) Study of the structure-properties relations of carbon spheres affecting electrochemical performances of EDLCs. Electrochim Acta 304:210–220. https://doi.org/10.1016/j.electacta.2019.02.121

    Article  CAS  Google Scholar 

  3. Kose KO, Piskin B, Aydınol MK (2018) Chemical and structural optimization of ZnCl2 activated carbons via high temperature CO2 treatment for EDLC applications. Int J Hydrogen Energy 43:18607–18616. https://doi.org/10.1016/j.ijhydene.2018.03.222

    Article  CAS  Google Scholar 

  4. Yang I, Yoo J, Kwon D, Choi D, Kim MS, Jung JC (2020) Improvement of a commercial activated carbon for organic electric double-layer capacitors using a consecutive doping method. Carbon 160:45–53. https://doi.org/10.1016/j.carbon.2020.01.024

    Article  CAS  Google Scholar 

  5. Shin DY, Sung KW, Ahn HJ (2019) Synergistic effect of heteroatom-doped activated carbon for ultrafast charge storage kinetics. Appl Surf Sci 478:499–504. https://doi.org/10.1016/j.apsusc.2019.01.186

    Article  CAS  Google Scholar 

  6. Zhou Y, Ren J, Li X, Zheng Q, Liao J, Long E, Xie F, Xu C, Lin D (2018) Waste soybean dreg-derived N/O co-doped hierarchical porous carbon for high performance supercapacitor. Electrochim Acta 284:336–345. https://doi.org/10.1016/j.electacta.2018.07.134

    Article  CAS  Google Scholar 

  7. Liu Y, Zhang J, Hu R (2017) One-pot hydrothermal synthesis and supercapacitive performance of nitrogen and MnO co-doped hierarchical porous carbon monoliths. Ceram Int 43:4427–4433. https://doi.org/10.1016/j.ceramint.2016.12.090

    Article  CAS  Google Scholar 

  8. Sahoo RK, Das A, Singh S, Lee D, Singh SK, Mane RS, Yun JM, Kim KH (2019) Synthesis of the 3D porous carbon-manganese oxide (3D-C@MnO) nanocomposite and its supercapacitor behavior study. Prog Nat Sci Mater Int 29:410–415. https://doi.org/10.1016/j.pnsc.2019.05.001

    Article  CAS  Google Scholar 

  9. Kim JG, Kim JH, Song BJ, Lee CW, Im JS (2016) Synthesis and its characterization of pitch from pyrolyzed fuel oil (PFO). J Ind Eng Chem 36:293–297. https://doi.org/10.1016/j.jiec.2016.02.014

    Article  CAS  Google Scholar 

  10. Becerra ME, Arias NP, Giraldo OH, López Suárez FE, Gómez MJI, López AB (2011) Soot combustion manganese catalysts prepared by thermal decomposition of KMnO4. Appl Catal B 102:260–266. https://doi.org/10.1016/j.apcatb.2010.12.006

    Article  CAS  Google Scholar 

  11. Lv S, Li C, Mi J, Meng H (2020) A functional activated carbon for efficient adsorption of phenol derived from pyrolysis of rice husk, KOH-activation and EDTA-4Na-modification. Appl Surf Sci 510:145425. https://doi.org/10.1016/j.apsusc.2020.145425

    Article  CAS  Google Scholar 

  12. Zhang B, Yang D, Qiu X, Qian Y, Yan M, Li Q (2020) Influences of aggregation behavior of lignin on the microstructure and adsorptive properties of lignin-derived porous carbons by potassium compound activation. J Ind Eng Chem 82:220–227. https://doi.org/10.1016/j.jiec.2019.10.016

    Article  CAS  Google Scholar 

  13. Seo SW, Choi YJ, Kim JH, Cho JH, Lee YS, Im JS (2019) Micropore-structured activated carbon prepared by waste PET/petroleum-based pitch. Carbon Lett 29:385–392. https://doi.org/10.1007/s42823-019-00028-w

    Article  Google Scholar 

  14. Kim MI, Im JS, Seo SW, Cho JH, Lee YS, Kim SJ (2019) Preparation of pitch-based activated carbon with surface-treated fly ash for SO2 gas removal. Carbon Lett. https://doi.org/10.1007/s42823-019-00107-y(in progress)

    Article  Google Scholar 

  15. Guan T, Zhao J, Zhang G, Zhang D, Han B, Tang N, Wang J, Li K (2018) Insight into controllability and predictability of pore structures in pitch based activated carbons. Microporous Mesoporous Mater 271:118–127. https://doi.org/10.1016/j.micromeso.2018.05.036

    Article  CAS  Google Scholar 

  16. Li M, Liu D, Men Z, Lou B, Yu S, Ding J, Cui W (2018) Effects of different extracted components from petroleum pitch on mesophase development. Fuel 222:617–626. https://doi.org/10.1016/j.fuel.2018.03.011

    Article  CAS  Google Scholar 

  17. Grissa R, Martinez H, Cotte S, Galipaud J, Pecquenard B, Cras FL (2017) Thorough XPS analyses on overlithiated manganese spinel cycled around the 3V plateau. Appl Surf Sci 411:449–456. https://doi.org/10.1016/j.apsusc.2017.03.205

    Article  CAS  Google Scholar 

  18. Sahin O, Yardim Y, Baytar O, Saka C (2020) Enhanced electrochemical double-layer capacitive performance with CO2 plasma treatment on activated carbon prepared from pyrolysis of pistachio shells. Int J Hydrogen Energy 45:8843–8852. https://doi.org/10.1016/j.ijhydene.2020.01.128

    Article  CAS  Google Scholar 

  19. Tu B, Wen R, Wang K, Cheng Y, Deng Y, Cao W, Zhang K, Tao H (2020) Efficient removal of aqueous hexavalent chromium by activated carbon derived from Bermuda grass. J Colloid Interface Sci 560:649–658. https://doi.org/10.1016/j.jcis.2019.10.103

    Article  CAS  Google Scholar 

  20. Yu Y, Ji J, Li K, Huang H, Shrestha RP, Oanh NTK, Winijkul E, Deng J (2019) Activated carbon supported MnO nanoparticles for efficient ozone decomposition at room temperature. Catal Today. https://doi.org/10.1016/j.cattod.2019.05.063(in progress)

    Article  Google Scholar 

  21. Luo JD, Zhang H, Qi XT, Yu J, Zhang Z, Wei JC, Yang ZY (2020) Agaric-assisted synthesis of core-shell MnO@C microcubes as super-high-volumetric-capacity anode for lithium-ion batteries. Carbon 162:36–45. https://doi.org/10.1016/j.carbon.2020.02.022

    Article  CAS  Google Scholar 

  22. Ding Y, Yang J, Yang G, Li P (2015) Fabrication of ordered mesoporous carbons anchored with MnO nanoparticles through dual-templating approach for supercapacitors. Ceram Int 41:9980–9987. https://doi.org/10.1016/j.ceramint.2015.04.078

    Article  CAS  Google Scholar 

  23. Yang KL, Yiacoumi S, Tsouris C (2003) Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry. J Electroanal Chem 540:159–167. https://doi.org/10.1016/S0022-0728(02)01308-6

    Article  CAS  Google Scholar 

  24. Raghu MS, Parashuram L, Kumar KY, Prasanna BP, Rao S, Krishnaiah P, Prashanth KN, Kumar CBP, Alrobei H (2020) Facile green synthesis of boroncarbonitride using orange peel; Its application in high-performance supercapacitors and detection of levodopa in real samples. Mater Today Commun 24:101033. https://doi.org/10.1016/j.mtcomm.2020.101033

    Article  CAS  Google Scholar 

  25. Li S, Han K, Si P, Li J, Lu C (2018) Improvement in the pore structure of gulfweed–based activated carbon via two-step acid treatment for high performance supercapacitors. J Electroanal Chem 820:103–110. https://doi.org/10.1016/j.jelechem.2018.05.003

    Article  CAS  Google Scholar 

  26. Wang L, Zhan J, Hei J, Su L, Chen H, Wu H, Wang Y, Wang H, Ren M (2019) Size-dependent capacitive behavior of homogeneous MnO nanoparticles on carbon cloth as electrodes for symmetric solid-state supercapacitors with high performance. Electrochim Acta 307:442–450. https://doi.org/10.1016/j.electacta.2019.04.001

    Article  CAS  Google Scholar 

  27. Wang T, Peng Z, Wang Y, Tang J, Zheng G (2013) MnO Nanoparticle@Mesoporous carbon composites grown on conducting substrates featuring high-performance lithium-ion battery. Supercapacitor Sensor Sci Rep 3:2693. https://doi.org/10.1038/srep02693

    Article  Google Scholar 

  28. Qu D, Feng X, Wei X, Guo L, Cai H, Tang H, Xie Z (2017) Synthesis of MnO nano-particle@Flourine doped carbon and its application in hybrid supercapacitor. Appl Surf Sci 413:344–350. https://doi.org/10.1016/j.apsusc.2017.03.305

    Article  CAS  Google Scholar 

  29. Tian X, Ma H, Li Z, Yan S, Ma L, Yu F, Wang G, Guo X, Ma Y, Wong C (2017) Flute type micropores activated carbon from cotton stalk for high performance supercapacitors. J Power Sour 359:88–96. https://doi.org/10.1016/j.jpowsour.2017.05.054

    Article  CAS  Google Scholar 

  30. Li Y, Zhang D, Zhang Y, He J, Wang Y, Wang K, Xu Y, Li H, Wang Y (2020) Biomass-derived microporous carbon with large micropore size for high-performance supercapacitors. J Power Sour 448:227396. https://doi.org/10.1016/j.jpowsour.2019.227396

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (no. 20164010201070) and also partially supported by the Korea Research Institute of Chemical Technology (KRICT) (no. SI2011-30, Development of economical hydrogen production and storage technology from low value carbon resources)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byong Chol Bai or Young-Seak Lee.

Ethics declarations

Conflict of interest

No potential conflict of interest relevant to this article was reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.J., Bai, B.C., Kim, M.I. et al. Improved specific capacitance of pitch-based activated carbon by KOH/KMnO4 agent for supercapacitors. Carbon Lett. 30, 585–591 (2020). https://doi.org/10.1007/s42823-020-00158-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00158-6

Keywords

Navigation