Skip to main content

Advertisement

Log in

Adhesion of anaerobic periodontal pathogens to extracellular matrix proteins

  • Bacterial and Fungal Pathogenesis - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Extracellular matrix (ECM) proteins are highly abundant in the human body and can be found in various tissues, most prominently in connective tissue and basement membrane. For invasive bacterial pathogens, these structures function as physical barriers that block access to underlying tissues. The ability to bind and degrade these barriers is important for the establishment of infections and migration to other body sites. In the oral cavity, the ECM and the basement membrane (BM) are important components of the Junctional epithelium (JE) that closes the gap between the teeth surface and the mucosa. In periodontitis, the JE is breached by invading pathogenic bacteria, particularly strict anaerobic species. In periodontitis, invading microorganisms induce an unregulated and destructive host response through polymicrobial synergism and dysbiosis that attracts immune cells and contributes to the destruction of connective tissue and bone in the periodontal pocket. Colonization of the periodontal pocket is the first step to establish this infection, and binding to ECM is a major advantage in this site. Several species of strict anaerobic bacteria are implicated in acute and chronic periodontitis, and although binding to ECM proteins was studied in these species, few adhesins were identified so far, and the mechanisms involved in adhesion are largely unidentified. This review summarizes the data available on the interaction of strict anaerobic bacteria and components of the ECM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Ofek I, Bayer EA, Abraham SN (2013) Bacterial adhesion. In: The Prokaryotes. Springer Berlin Heidelberg, Berlin, pp 107–123. https://doi.org/10.1007/978-3-642-30144-5_50

    Chapter  Google Scholar 

  2. Paulsson M, Riesbeck K (2018) How bacteria hack the matrix and dodge the bullets of immunity. Eur Respir Rev 27(148):180018. https://doi.org/10.1183/16000617.0018-2018

    Article  PubMed  Google Scholar 

  3. Allen BL (1994) MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48(1):585–617. https://doi.org/10.1146/annurev.micro.48.1.585

    Article  PubMed  Google Scholar 

  4. Groeger SE, Meyle J (2015) Epithelial barrier and oral bacterial infection. Periodontol 69(1):46–67. https://doi.org/10.1111/prd.12094

    Article  Google Scholar 

  5. Groeger S, Meyle J (2019) Oral mucosal epithelial cells. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.00208

  6. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123(24):4195–4200. https://doi.org/10.1242/jcs.023820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27. https://doi.org/10.1016/j.addr.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  8. Badylak SF, Freytes DO, Gilbert TW (2015) Reprint of: extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 23:S17–S26. https://doi.org/10.1016/j.actbio.2015.07.016

    Article  PubMed  Google Scholar 

  9. Deshmukh S, Dive A, Moharil R, Munde P (2016) Enigmatic insight into collagen. J Oral Maxillofac Pathol 20(2):276–283. https://doi.org/10.4103/0973-029X.185932

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pozzi A, Yurchenco PD, Iozzo RV (2017) The nature and biology of basement membranes. Matrix Biol 57–58:1–11. https://doi.org/10.1016/j.matbio.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  11. LeBleu VS, MacDonald B, Kalluri R (2007) Structure and function of basement membranes. Exp Biol Med 232(9):1121–1129. https://doi.org/10.3181/0703-MR-72

    Article  CAS  Google Scholar 

  12. Chung AE, Jaffe R, Freeman IL, Vergnes J-P, Braginski JE, Carlin B (1979) Properties of a basement membrane-related glycoprotein synthesized in culture by a mouse embryonal carcinoma-derived cell line. Cell. 16(2):277–287. https://doi.org/10.1016/0092-8674(79)90005-9

    Article  CAS  PubMed  Google Scholar 

  13. Kleinman HK, McGarvey ML, Liotta LA, Robey PG, Tryggvason K, Martin GR (1982) Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry. 21(24):6188–6193. https://doi.org/10.1021/bi00267a025

    Article  CAS  PubMed  Google Scholar 

  14. Poschl E (2004) Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development. 131(7):1619–1628. https://doi.org/10.1242/dev.01037

    Article  CAS  PubMed  Google Scholar 

  15. Yurchenco PD (2011) Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol 3(2):a004911–a004911. https://doi.org/10.1101/cshperspect.a004911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Murphy-Ullrich JE, Sage EH (2014) Revisiting the matricellular concept. Matrix Biol 37:1–14. https://doi.org/10.1016/j.matbio.2014.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bos IR, Burkhardt A (1980) Interepithelial cells of the oral mucosa light and electron microscopic observations in germfree, specific pathogen-free and conventionalized mice. J Oral Pathol Med 9(2):65–81. https://doi.org/10.1111/j.1600-0714.1980.tb01389.x

    Article  CAS  Google Scholar 

  18. Wade WG (2013) Characterisation of the human oral microbiome. J Oral Biosci 55(3):143–148. https://doi.org/10.1016/j.job.2013.06.001

    Article  CAS  Google Scholar 

  19. Lamont RJ, Koo H, Hajishengallis G (2018) The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol 16(12):745–759. https://doi.org/10.1038/s41579-018-0089-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bowen WH, Burne RA, Wu H, Koo H (2018) Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol 26(3):229–242. https://doi.org/10.1016/j.tim.2017.09.008

    Article  CAS  PubMed  Google Scholar 

  21. Simón-Soro A, Mira A (2015) Solving the etiology of dental caries. Trends Microbiol 23(2):76–82. https://doi.org/10.1016/j.tim.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  22. Armitage GC (2004) Periodontal diagnoses and classification of periodontal diseases. Periodontol 34(1):9–21. https://doi.org/10.1046/j.0906-6713.2002.003421.x

    Article  Google Scholar 

  23. Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, Flemmig TF, Garcia R, Giannobile WV, Graziani F, Greenwell H, Herrera D, Kao RT, Kebschull M, Kinane DF, Kirkwood KL, Kocher T, Kornman KS, Kumar PS, Loos BG, Machtei E, Meng H, Mombelli A, Needleman I, Offenbacher S, Seymour GJ, Teles R, Tonetti MS (2018) Periodontitis: consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Clin Periodontol 45:S162–S170. https://doi.org/10.1111/jcpe.12946

    Article  PubMed  Google Scholar 

  24. Chee B, Park B, Bartold MP (2013) Periodontitis and type II diabetes: a two-way relationship. Int J Evid Based Healthc 11(4):317–329. https://doi.org/10.1111/1744-1609.12038

    Article  PubMed  Google Scholar 

  25. Berlin-Broner Y, Febbraio M, Levin L (2017) Association between apical periodontitis and cardiovascular diseases: a systematic review of the literature. Int Endod J 50(9):847–859. https://doi.org/10.1111/iej.12710

    Article  CAS  PubMed  Google Scholar 

  26. Peddis N, Musu D, Ideo F, Rossi-Fedele G, Cotti E (2019) Interaction of biologic therapy with apical periodontitis and periodontitis: a systematic review. Aust Dent J 64(2):122–134. https://doi.org/10.1111/adj.12684

    Article  CAS  PubMed  Google Scholar 

  27. Amano A (2007) Disruption of epithelial barrier and impairment of cellular function by Porphyromonas gingivalis. Front Biosci 12(8–12):3965. https://doi.org/10.2741/2363

    Article  CAS  PubMed  Google Scholar 

  28. Connolly E, Millhouse E, Doyle R, Culshaw S, Ramage G, Moran GP (2017) The Porphyromonas gingivalis hemagglutinins HagB and HagC are major mediators of adhesion and biofilm formation. Mol Oral Microbiol 32(1):35–47. https://doi.org/10.1111/omi.12151

    Article  CAS  PubMed  Google Scholar 

  29. Nishiyama S-I, Murakami Y, Nagata H, Shizukuishi S, Kawagishi I, Yoshimura F (2007) Involvement of minor components associated with the FimA fimbriae of Porphyromonas gingivalis in adhesive functions. Microbiology. 153(6):1916–1925. https://doi.org/10.1099/mic.0.2006/005561-0

    Article  CAS  PubMed  Google Scholar 

  30. Amano A, Sojar HT, Lee JY, Sharma A, Levine MJ, Genco RJ (1994) Salivary receptors for recombinant fimbrillin of Porphyromonas gingivalis. Infect Immun

  31. Murakami Y (1998) Fibronectin in saliva inhibits Porphyromonas gingivalis fimbria-induced expression of inflammatory cytokine gene in mouse macrophages. FEMS Immunol Med Microbiol 22(3):257–262. https://doi.org/10.1016/S0928-8244(98)00098-4

    Article  CAS  PubMed  Google Scholar 

  32. Al-Taweel FBH, Al-Magsoosi MJN, Douglas CWI, Whawell SA (2018) Identification of key determinants in Porphyromonas gingivalis host-cell invasion assays. Eur J Oral Sci 126(5):367–372. https://doi.org/10.1111/eos.12557

    Article  CAS  PubMed  Google Scholar 

  33. Nakamura T (1999) Specific interactions between Porphyromonas gingivalis fimbriae and human extracellular matrix proteins. FEMS Microbiol Lett 175(2):267–272. https://doi.org/10.1016/S0378-1097(99)00205-0

    Article  CAS  PubMed  Google Scholar 

  34. Li N, Collyer CA (2011) Gingipains from Porphyromonas gingivalis — complex domain structures confer diverse functions. Eur J Microbiol Immunol 1(1):41–58. https://doi.org/10.1556/EuJMI.1.2011.1.7

    Article  CAS  Google Scholar 

  35. Hočevar K, Potempa J, Turk B (2018) Host cell-surface proteins as substrates of gingipains, the main proteases of Porphyromonas gingivalis. Biol Chem 399(12):1353–1361. https://doi.org/10.1515/hsz-2018-0215

    Article  CAS  PubMed  Google Scholar 

  36. Pike RN, Potempa J, Mcgraw W, Coetzer THT, Travis J (1996) Characterization of the binding activities of proteinase-adhesin complexes from Porphyromonas gingivalis. J Bacteriol 178:2876–2882. https://doi.org/10.1128/jb.178.10.2876-2882.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O’Brien-Simpson N, Veith P, Dashper S, Reynolds E (2003) Porphyromonas gingivalis gingipains: the molecular teeth of a microbial vampire. Curr Protein Pept Sci 4(6):409–426. https://doi.org/10.2174/1389203033487009

    Article  Google Scholar 

  38. Zhang Y, Wang X, Li H, Ni C, Du Z, Yan F (2018) Human oral microbiota and its modulation for oral health. Biomed Pharmacother 99:883–893. https://doi.org/10.1016/j.biopha.2018.01.146

    Article  PubMed  Google Scholar 

  39. Arora N, Mishra A, Chugh S (2014) Microbial role in periodontitis: have we reached the top? Some unsung bacteria other than red complex. J Indian Soc Periodontol 18(1):9–13. https://doi.org/10.4103/0972-124X.128192

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ibrahim M, Subramanian A, Anishetty S (2017) Comparative pan genome analysis of oral Prevotella species implicated in periodontitis. Funct Integr Genomics 17(5):513–536. https://doi.org/10.1007/s10142-017-0550-3

    Article  CAS  PubMed  Google Scholar 

  41. Eiring P, Waller K, Widmann A, Werner H, Werner H (1998) Fibronectin and laminin binding of urogenital and oral Prevotella species. Zentrabl Bakteriol 288:361–372

    Article  CAS  Google Scholar 

  42. Yu F, Iyer D, Anaya C, Lewis JP (2006) Identification and characterization of a cell surface protein of Prevotella intermedia 17 with broad-spectrum binding activity for extracellular matrix proteins. Proteomics. 6(22):6023–6032. https://doi.org/10.1002/pmic.200600177

    Article  CAS  PubMed  Google Scholar 

  43. Grenier D (1996) Collagen-binding activity of Prevotella intermedia measured by a microtitre plate adherence assay. Microbiology. 142(6):1537–1541. https://doi.org/10.1099/13500872-142-6-1537

    Article  CAS  PubMed  Google Scholar 

  44. Babu JP, Dean JW, Pabst MJ (1995) Attachment of Fusobacterium nucleatum to fibronectin immobilized on gingival epithelial cells or glass coverslips. J Periodontol 66(4):285–290. https://doi.org/10.1902/jop.1995.66.4.285

    Article  CAS  PubMed  Google Scholar 

  45. Gendron R, Plamondon P, Grenier D (2004) Binding of pro-matrix metalloproteinase 9 by Fusobacterium nucleatum subsp. nucleatum as a mechanism to promote the invasion of a reconstituted basement membrane. Infect Immun 72(10):6160–6163. https://doi.org/10.1128/IAI.72.10.6160-6163.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tanner A, Maiden MFJ, Macuch PJ, Murray LL, Kent RL (1998) Microbiota of health, gingivitis, and initial periodontitis. J Clin Periodontol 25(2):85–98. https://doi.org/10.1111/j.1600-051X.1998.tb02414.x

    Article  CAS  PubMed  Google Scholar 

  47. Sakakibara J, Nagano K, Murakami Y, Higuchi N, Nakamura H, Shimozato K, Yoshimura F (2007) Loss of adherence ability to human gingival epithelial cells in S-layer protein-deficient mutants of Tannerella forsythensis. Microbiology. 153(3):866–876. https://doi.org/10.1099/mic.0.29275-0

    Article  CAS  PubMed  Google Scholar 

  48. Sharma A, Sojar HT, Glurich I, Honma K, Kuramitsu HK, Genco RJ (1998) Cloning, expression, and sequencing of a cell surface antigen containing a leucine-rich repeat motif from Bacteroides forsythus ATCC 43037. McGhee JR, ed. Infect Immun 66(12):5703–5710. doi:https://doi.org/10.1128/IAI.66.12.5703-5710.1998

  49. Sharma A (2010) Virulence mechanisms of Tannerella forsythia. Periodontol 54(1):106–116. https://doi.org/10.1111/j.1600-0757.2009.00332.x

    Article  Google Scholar 

  50. Abe T, Murakami Y, Nagano K, Hasegawa Y, Moriguchi K, Ohno N, Shimozato K, Yoshimura F (2011) OmpA-like protein influences cell shape and adhesive activity of Tannerella forsythia. Mol Oral Microbiol 26(6):374–387. https://doi.org/10.1111/j.2041-1014.2011.00625.x

    Article  CAS  PubMed  Google Scholar 

  51. Ksiazek M, Karim AY, Bryzek D, et al. (2015) Mirolase, a novel subtilisin-like serine protease from the periodontopathogen Tannerella forsythia. Biol Chem. 396(3). doi:https://doi.org/10.1515/hsz-2014-0256

  52. Edwards AM, Jenkinson HF, Woodward MJ, Dymock D (2005) Binding properties and adhesion-mediating regions of the major sheath protein of Treponema denticola ATCC 35405. Infect Immun 73(5):2891–2898. https://doi.org/10.1128/IAI.73.5.2891-2898.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chi B, Qi M, Kuramitsu HK (2003) Role of dentilisin in Treponema denticola epithelial cell layer penetration. Res Microbiol 154(9):637–643. https://doi.org/10.1016/j.resmic.2003.08.001

    Article  CAS  PubMed  Google Scholar 

  54. Bamford CV, Fenno JC, Jenkinson HF, Dymock D (2007) The chymotrypsin-like protease complex of Treponema denticola ATCC 35405 mediates fibrinogen adherence and degradation. Infect Immun 75(9):4364–4372. https://doi.org/10.1128/IAI.00258-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Haapasalo M, Hannam P, McBride BC, Uitto V-J (1996) Hyaluronan, a possible ligand mediating Treponema denticola binding to periodontal tissue. Oral Microbiol Immunol 11(3):156–160. https://doi.org/10.1111/j.1399-302X.1996.tb00351.x

    Article  CAS  PubMed  Google Scholar 

  56. Fenno JC, Tamura M, Hannam PM, Wong GWK, Chan RA, McBride BC (2000) Identification of a Treponema denticola OppA homologue that binds host proteins present in the subgingival environment. Infect Immun 68(4):1884–1892. https://doi.org/10.1128/IAI.68.4.1884-1892.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Berbari EF, Cockerill FR, Steckelberg JM (1997) Infective endocarditis due to unusual or fastidious microorganisms. Mayo Clin Proc 72(6):532–542. https://doi.org/10.4065/72.6.532

    Article  CAS  PubMed  Google Scholar 

  58. Tang G, Kitten T, Munro CL, Wellman GC, Mintz KP (2008) EmaA, a potential virulence determinant of Aggregatibacter actinomycetemcomitans in infective endocarditis. Infect Immun 76(6):2316–2324. https://doi.org/10.1128/IAI.00021-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fine DH, Kaplan JB, Kachlany SC, Schreiner HC (2006) How we got attached to Actinobacillus actinomycetemcomitans: a model for infectious diseases. Periodontol 42(1):114–157. https://doi.org/10.1111/j.1600-0757.2006.00189.x

    Article  Google Scholar 

  60. Ferreira E d O, Araújo Lobo L, Barreiros Petrópolis D et al (2006) A Bacteroides fragilis surface glycoprotein mediates the interaction between the bacterium and the extracellular matrix component laminin-1. Res Microbiol 157(10):960–966. https://doi.org/10.1016/j.resmic.2006.09.005

    Article  CAS  PubMed  Google Scholar 

  61. Galvão BPG V., Weber BW, Rafudeen MS, Ferreira EO, Patrick S, Abratt VR (2014) Identification of a collagen type I adhesin of Bacteroides fragilis. Tunney M, ed. PLoS One. 9(3):e91141. doi:https://doi.org/10.1371/journal.pone.0091141

  62. Pauer H, Ferreira EDO, dos Santos-Filho J et al (2009) A TonB-dependent outer membrane protein as a Bacteroides fragilis fibronectin-binding molecule. FEMS Immunol Med Microbiol 55(3):388–395. https://doi.org/10.1111/j.1574-695X.2009.00532.x

    Article  CAS  PubMed  Google Scholar 

  63. Calabi E, Calabi F, Phillips AD, Fairweather NF (2002) Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infect Immun 70(10):5770–5778. https://doi.org/10.1128/IAI.70.10.5770-5778.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hennequin C (2003) Identification and characterization of a fibronectin-binding protein from Clostridium difficile. Microbiology. 149(10):2779–2787. https://doi.org/10.1099/mic.0.26145-0

    Article  CAS  PubMed  Google Scholar 

  65. Sillanpaa J, Martinez B, Antikainen J et al (2000) Characterization of the collagen-binding S-layer protein CbsA of Lactobacillus crispatus. J Bacteriol 182(22):6440–6450. https://doi.org/10.1128/JB.182.22.6440-6450.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Horie M, Murakami T, Sato T, Tarusawa Y, Nakamura S, Toba T (2005) Anaerobic induction of adherence to laminin in Lactobacillus gasseri strains by contact with solid surface. Curr Microbiol 51(4):275–282. https://doi.org/10.1007/s00284-005-4572-z

    Article  CAS  PubMed  Google Scholar 

  67. Lobo LA (2006) Adhesive properties of the puri ¢ ed plasminogen activator Pla of Yersinia pestis. 262:158–162. doi:https://doi.org/10.1111/j.1574-6968.2006.00382.x

  68. Ferreira E d O, Teixeira FL, Cordeiro F et al (2013) The Bfp60 surface adhesin is an extracellular matrix and plasminogen protein interacting in Bacteroides fragilis. Int J Med Microbiol. https://doi.org/10.1016/j.ijmm.2013.06.007

  69. Ofek I, Hasty DL, Sharon N (2003) Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol Med Microbiol 38(3):181–191. https://doi.org/10.1016/S0928-8244(03)00228-1

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro—FAPERJ, Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, and Coordenação de Aperfeiçoamento de Pessoal de Pós-Graduação—CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro A. Lobo.

Ethics declarations

Conflict of interests

The author declares that there is no conflict of interest.

Consent for publication

Not applicable.

Additional information

Responsible Editor: Waldir P. Elias.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marre, A.T., Domingues, R.M.C.P. & Lobo, L.A. Adhesion of anaerobic periodontal pathogens to extracellular matrix proteins. Braz J Microbiol 51, 1483–1491 (2020). https://doi.org/10.1007/s42770-020-00312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00312-2

Keywords

Navigation