Skip to main content

Advertisement

Log in

Biochemical Methane Potential Assay Using Single Versus Dual Sludge Inocula and Gap in Energy Recovery from Napier Grass Digestion

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Potential energy recovery from Napier grass biomass was evaluated in batch mode and later compared with different digestion techniques, i.e., theoretical calculation and anaerobic digester operations. In the first part, different anaerobic digester sludges from pig farm, palm oil mill, and concentrated rubber latex factory, designated as PIG, PALM, and RUB in order, were evaluated for their ability as inoculant for biochemical methane potential (BMP) study. Using the first-order and Gompertz models, PIG and RUB were found to possess highest hydrolysis and methanogenesis activities, respectively. Prior to full BMP test on real biomass, suitable inoculum to substrate ratio (ISR) was identified, where ISR ≥1 g VSinoculum per g VSsubstrate was found statistically equivalent for the Napier grass substrate. Results from a series of BMP assays revealed a far more superior digestibility performance of the dual sludge inoculum over the individual PIG and RUB at 32% and 49%, respectively. The protocol proposed in this study could be used as an evaluation and selection guideline for BMP inoculum. In the second part, these BMP results were compared and contrasted with the theoretical methane potential and methane yields from wet and dry Napier grass digester operations in reference to the recoverable energy of this biomass. Gap between different methods suggests rooms for improvement and utilization of the residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Safari M, Abdi R, Adl M, Kafashan J (2018) Optimization of biogas productivity in lab-scale by response surface methodology. Renew Energy 118:368–375. https://doi.org/10.1016/j.renene.2017.11.025

    Article  CAS  Google Scholar 

  2. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42(0):35–53. https://doi.org/10.1016/j.pecs.2014.01.001

    Article  Google Scholar 

  3. Wen B, Yuan X, Li QX, Liu J, Ren J, Wang X, Cui Z (2015) Comparison and evaluation of concurrent saccharification and anaerobic digestion of Napier grass after pretreatment by three microbial consortia. Bioresour Technol 175(0):102–111. https://doi.org/10.1016/j.biortech.2014.10.043

    Article  CAS  Google Scholar 

  4. Mafuleka S, Kana EBG (2015) Modelling and optimization of xylose and glucose production from Napier grass using hybrid pre-treatment techniques. Biomass Bioenergy 77:200–208. https://doi.org/10.1016/j.biombioe.2015.03.031

    Article  CAS  Google Scholar 

  5. Reddy KO, Maheswari CU, Shukla M, Rajulu AV (2012) Chemical composition and structural characterization of Napier grass fibers. Mater Lett 67(1):35–38. https://doi.org/10.1016/j.matlet.2011.09.027

    Article  CAS  Google Scholar 

  6. Feng L, Li Y, Chen C, Liu X, Xiao X, Ma X, Zhang R, He Y, Liu G (2013) Biochemical methane potential (BMP) of vinegar residue and the influence of feed to inoculum ratios on biogas production. BioResources 8(2):2487–2498. https://doi.org/10.15376/biores.8.2.2487-2498

    Article  Google Scholar 

  7. Chanpla M, Kullavanijaya P, Janejadkarn A, Chavalparit O (2018) Effect of harvesting age and performance evaluation on biogasification from Napier grass in separated stages process. KSCE J Civ Eng 22(1):40–45. https://doi.org/10.1007/s12205-017-1164-y

    Article  Google Scholar 

  8. Narinthorn R, Choorit W, Chisti Y (2019) Alkaline and fungal pretreatments for improving methane potential of Napier grass. Biomass Bioenergy 127:105262. https://doi.org/10.1016/j.biombioe.2019.105262

    Article  CAS  Google Scholar 

  9. Phuttaro C, Sawatdeenarunat C, Surendra KC, Boonsawang P, Chaiprapat S, Kumar Khanal S (2019) Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass: influence of pretreatment temperatures, inhibitors and soluble organics on methane yield. Bioresour Technol 284:128–138. https://doi.org/10.1016/j.biortech.2019.03.114

    Article  CAS  Google Scholar 

  10. Pellera F-M, Gidarakos E (2016) Effect of substrate to inoculum ratio and inoculum type on the biochemical methane potential of solid agroindustrial waste. J Environ Chem Eng 4(3):3217–3229. https://doi.org/10.1016/j.jece.2016.05.026

    Article  CAS  Google Scholar 

  11. Kafle GK, Chen L (2016) Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag 48:492–502. https://doi.org/10.1016/j.wasman.2015.10.021

    Article  CAS  Google Scholar 

  12. Achinas S, Euverink GJW (2019) Effect of combined inoculation on biogas production from hardly degradable material. Energies 12(2):217. https://doi.org/10.3390/en12020217

    Article  CAS  Google Scholar 

  13. Krishania M, Vijay VK, Chandra R (2013) Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay. Energy 57(0):359–367. https://doi.org/10.1016/j.energy.2013.05.028

    Article  CAS  Google Scholar 

  14. Angelidaki I, Alves MM, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Kalyuzhnyi S, Jenicek P, Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59(5):927–934. https://doi.org/10.2166/wst.2009.040

    Article  CAS  Google Scholar 

  15. Raposo F, Banks CJ, Siegert I, Heaven S, Borja R (2006) Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem 41(6):1444–1450. https://doi.org/10.1016/j.procbio.2006.01.012

    Article  CAS  Google Scholar 

  16. Phuttaro C, Reungsang A, Boonsawang P, Chaiprapat S (2019) Integrative effects of sonication and particle size on biomethanation of tropical grass Pennisetum purpureum using superior diverse inocula cultures. Energies 12(22):4226. https://doi.org/10.3390/en12224226

    Article  CAS  Google Scholar 

  17. Hussain A, Dubey SK (2017) Specific methanogenic activity test for anaerobic degradation of influents. Appl Water Sci 7(2):535–542. https://doi.org/10.1007/s13201-015-0305-z

    Article  CAS  Google Scholar 

  18. Raposo F, Fernández-Cegrí V, De la Rubia MA, Borja R, Béline F, Cavinato C, Demirer G, Fernández B, Fernández-Polanco M, Frigon JC, Ganesh R, Kaparaju P, Koubova J, Méndez R, Menin G, Peene A, Scherer P, Torrijos M, Uellendahl H, Wierinck I, de Wilde V (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86(8):1088–1098. https://doi.org/10.1002/jctb.2622

    Article  CAS  Google Scholar 

  19. Hosokai S, Matsuoka K, Kuramoto K, Suzuki Y (2016) Modification of Dulong’s formula to estimate heating value of gas, liquid and solid fuels. Fuel Process Technol 152:399–405. https://doi.org/10.1016/j.fuproc.2016.06.040

    Article  CAS  Google Scholar 

  20. Odedina MJ, Charnnok B, Saritpongteeraka K, Chaiprapat S (2017) Effects of size and thermophilic pre-hydrolysis of banana peel during anaerobic digestion, and biomethanation potential of key tropical fruit wastes. Waste Manag 68:128–138. https://doi.org/10.1016/j.wasman.2017.07.003

    Article  CAS  Google Scholar 

  21. Thaemngoen A, Saritpongteeraka K, Leu S-Y, Phuttaro C, Sawatdeenarunat C, Chaiprapat S (2020) Anaerobic digestion of Napier grass (Pennisetum purpureum) in two-phase dry digestion system versus wet digestion system. BioEnergy Res:1–13. https://doi.org/10.1007/s12155-020-10110-1

  22. APHA, AWWA, WEFF (2005) Standard methods for the examination of water and wastewater. 21 edn., the United States of America

  23. Merlin Christy P, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sust Energ Rev 34:167–173. https://doi.org/10.1016/j.rser.2014.03.010

    Article  CAS  Google Scholar 

  24. Zhang J, Wang S, Lang S, Xian P, Xie T (2016) Kinetics of combined thermal pretreatment and anaerobic digestion of waste activated sludge from sugar and pulp industry. Chem Eng J 295:131–138. https://doi.org/10.1016/j.cej.2016.03.028

    Article  CAS  Google Scholar 

  25. Dechrugsa S, Kantachote D, Chaiprapat S (2013) Effects of inoculum to substrate ratio, substrate mix ratio and inoculum source on batch co-digestion of grass and pig manure. Bioresour Technol 146(0):101–108. https://doi.org/10.1016/j.biortech.2013.07.051

    Article  CAS  Google Scholar 

  26. Dandikas V, Heuwinkel H, Lichti F, Eckl T, Drewes JE, Koch K (2018) Correlation between hydrolysis rate constant and chemical composition of energy crops. Renew Energy 118:34–42. https://doi.org/10.1016/j.renene.2017.10.100

    Article  CAS  Google Scholar 

  27. Saha B, Sathyan A, Mazumder P, Choudhury SP, Kalamdhad AS, Khwairakpam M, Mishra U (2018) Biochemical methane potential (BMP) test for Ageratum conyzoides to optimize ideal food to microorganism (F/M) ratio. J Environ Chem Eng 6(4):5135–5140. https://doi.org/10.1016/j.jece.2018.07.036

    Article  CAS  Google Scholar 

  28. Lesteur M, Bellon-Maurel V, Gonzalez C, Latrille E, Roger JM, Junqua G, Steyer JP (2010) Alternative methods for determining anaerobic biodegradability: a review. Process Biochem 45(4):431–440. https://doi.org/10.1016/j.procbio.2009.11.018

    Article  CAS  Google Scholar 

  29. Tasnim T, Behera SK, Zafar M, Park H-S (2016) Batch anaerobic digestion of simulated Bangladeshi food waste: methane production at different inoculum-to-substrate ratios and kinetic analysis. Int J Global Warm 9(1):95–109

    Article  Google Scholar 

  30. Al Seadi T, Lukehurst C (2012) Quality management of digestate from biogas plants used as fertiliser. IEA bioenergy 37:40

    Google Scholar 

Download references

Funding

Funding for this study was provided by the Energy Policy and Planning Office (EPPO), Ministry of Energy, Thailand (Grant No. 063/2559), Research and Researchers for Industries Program, the Thailand Research Fund (Grant No. PHD57I0032), Center of Excellence on Energy Technology and Environmental, Postgraduate Education and Research Development Office (PERDO), and the Graduate School of Prince of Songkla University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumate Chaiprapat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thaemngoen, A., Phuttaro, C., Saritpongteeraka, K. et al. Biochemical Methane Potential Assay Using Single Versus Dual Sludge Inocula and Gap in Energy Recovery from Napier Grass Digestion. Bioenerg. Res. 13, 1321–1329 (2020). https://doi.org/10.1007/s12155-020-10154-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10154-3

Keywords

Navigation