Skip to main content

Advertisement

Log in

An overview on marine cellulolytic enzymes and their potential applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Marine-derived enzymes have recently gained attention particularly for industrial applications. Cellulose-degrading enzymes are among leading biocatalysts with potential utility in biorefineries. This review presents an account of the cellulase production by marine sources from microorganisms including bacteria, yeasts, and molds to marine invertebrates such as protist, rotifer, mollusks, arthropods, and echinoderms. Cellulose-degrading ability of marine invertebrates is attributed to the production of endogenous cellulases and activities by the symbionts. Specialized environments in marine including estuaries and mangroves are rich in lignocellulosic biomass and hence provide a feeding ground for cellulose digesters. Since cellulosic biomass is considered chemical and energy feedstock, therefore, cellulases with the ability to work under extreme environment are much needed to fulfill the demand of modern biotechnological industries. The review also discusses physicochemical parameters of marine-derived cellulases.

Key Points:

• Cellulolytic ability is widely distributed amongst marine organisms, yet very few have been studied for their biotechnological potential

• Cellulase from marine organisms has been demonstrated as a successful agent in degradation of seaweed processing waste to low molecular fragments

• Marine derived cellulases can find their application in green processes

• Cellulases from marine sources exhibit high specific activity, thermostability, and other important biochemical properties and hence can contend well with the enzymes from terrestrial sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afzal S, Saleem M, Yasmin R, Naz M, Imran M (2010) Pre and post cloning characterization of a β-1, 4-endoglucanase from Bacillus sp. Mol Biol Rep 37(4):1717–1723

    CAS  PubMed  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    CAS  PubMed  Google Scholar 

  • Allman AL, Williams EP, Place AR (2017) Growth and enzyme production in blue crabs (Callinectes sapidus) fed cellulose and chitin supplemented diets. J Shellfish Res 36(1):283–291

    Google Scholar 

  • An T, Dong Z, Lv J, Liu Y, Wang M, Wei S, Song Y, Zhang Y, Deng S (2015) Purification and characterization of a salt-tolerant cellulase from the mangrove oyster, Crassostrea rivularis. Acta Biochim Biophys Sin 47(4):299–305

    CAS  PubMed  Google Scholar 

  • Bailey MJ, Poutanen K (1989) Production of xylanolytic enzymes by strains of Aspergillus. Appl Microbiol Biotechnol 30(1):5–10

    CAS  Google Scholar 

  • Baker PW, Kennedy J, Dobson AD, Marchesi JR (2009) Phylogenetic diversity and antimicrobial activities of fungi associated with Haliclona simulans isolated from Irish coastal waters. Mar Biotechnol 11(4):540–547

    CAS  Google Scholar 

  • Barzkar N, Fariman GA, Taheri A (2017) Proximate composition and mineral contents in the body wall of two species of sea cucumber from Oman Sea. Environ Sci Pollut Res Int 24(23):18907–18911

    CAS  PubMed  Google Scholar 

  • Barzkar N, Homaei A, Hemmati R, Patel S (2018) Thermostable marine microbial proteases for industrial applications: scopes and risks. Extremophiles 22(3):335–346

    CAS  PubMed  Google Scholar 

  • Barzkar N, Jahromi ST, Poorsaheli HB, Vianello F (2019) Metabolites from marine microorganisms, micro, and macroalgae: immense scope for pharmacology. Mar Drugs 17(8):464

    CAS  PubMed Central  Google Scholar 

  • Batista-García RA, Sutton T, Jackson SA, Tovar-Herrera OE, Balcázar-López E, del Rayo S-CM, Sánchez-Reyes A, Dobson AD, Folch-Mallol JL (2017) Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLoS One 12(3):e0173750

    PubMed  PubMed Central  Google Scholar 

  • Beauchemin K, Rode L, Sewalt V (1995) Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Can J Anim Sci 75(4):641–644

    Google Scholar 

  • Bhat S, Hutson R, Owen E, Bhat M (1997) Determination of immunological homology between cellulosome subunits and cloned endoglucanases and xylanase of Clostridium thermocellum. Anaerobe 3(5):347–352

    CAS  PubMed  Google Scholar 

  • Bianchi TS (2011) The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc Natl Acad Sci 108(49):19473–19481

    CAS  PubMed  Google Scholar 

  • Biswas R, Persad A, Bisaria VS (2014) Production of cellulolytic enzymes. Bioproc Renew Resour Commod Bioprod 1:105–132

    Google Scholar 

  • Bremer G, Talbot G (1995) Cellulolytic enzyme activity in the marine protist Schizochytrium aggregatum. Bot Mar 38(1-6):37–42

    CAS  Google Scholar 

  • Bui TH, Lee SY (2015) Endogenous cellulase production in the leaf litter foraging mangrove crab Parasesarma erythodactyla. Comp Biochem Physiol B Biochem Mol Biol 179:27–36

    CAS  PubMed  Google Scholar 

  • Cavaco-Paulo A (1998) Mechanism of cellulase action in textile processes. Carbohydr Polym 37(3):273–277

    CAS  Google Scholar 

  • Chang MC (2007) Harnessing energy from plant biomass. Curr Opin Chem Biol 11(6):677–684

    CAS  PubMed  Google Scholar 

  • Chantarasiri A (2015) Aquatic Bacillus cereus JD0404 isolated from the muddy sediments of mangrove swamps in Thailand and characterization of its cellulolytic activity. Egypt J Aquat Res 41(3):257–264

    Google Scholar 

  • Chen M, Zhao J, Xia L (2008) Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr Polym 71(3):411–415

    CAS  Google Scholar 

  • Chen X-L, Hou Y-P, Jin M, Zeng R-Y, Lin H-T (2016) Expression and characterization of a novel thermostable and pH-stable β-agarase from deep-sea bacterium Flammeovirga sp. OC4. J Agric Food Chem 64(38):7251–7258

    CAS  PubMed  Google Scholar 

  • Chi Z, Chi Z, Zhang T, Liu G, Li J, Wang X (2009) Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnol Adv 27(3):236–255

    CAS  PubMed  Google Scholar 

  • Chi Z-M, Liu G, Zhao S, Li J, Peng Y (2010) Marine yeasts as biocontrol agents and producers of bio-products. Appl Microbiol Biotechnol 86(5):1227–1241

    CAS  PubMed  Google Scholar 

  • Christov L, Szakacs G, Balakrishnan H (1999) Production, partial characterization and use of fungal cellulase-free xylanases in pulp bleaching. Process Biochem 34(5):511–517

    CAS  Google Scholar 

  • Chun CZ, Kim YT, Hur SB (1997) Purification and characterization of an endoglucanase from the marine rotifer, Brachionus plicatilis. IUBMB Life 43(2):241–249

    CAS  Google Scholar 

  • Connell L, Redman R, Craig S, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56(3):448–459

    CAS  PubMed  Google Scholar 

  • Cowie GL, Hedges JI (1984) Carbohydrate sources in a coastal marine environment. Geochim Cosmochim Acta 48(10):2075–2087

    CAS  Google Scholar 

  • Dalmaso GZL, Ferreira D, Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13(4):1925–1965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davison A, Blaxter M (2005) Ancient origin of glycosyl hydrolase family 9 cellulase genes. Mol Biol Evol 22(5):1273–1284

    CAS  PubMed  Google Scholar 

  • de Moraes Akamine DT, da Silva DDAC, de Lima Câmara G, Carvalho TV, Brienzo M (2018) Endoglucanase activity in Neoteredo reynei (Bivalvia, Teredinidae) digestive organs and its content. World J Microbiol Biotechnol 34(6):84

    PubMed  Google Scholar 

  • Deep K, Poddar A, Das SK (2016) Cloning, overexpression, and characterization of halostable, solvent-tolerant novel β-endoglucanase from a marine bacterium Photobacterium panuliri LBS5 T (DSM 27646 T). Appl Biochem Biotechnol 178(4):695–709

    CAS  PubMed  Google Scholar 

  • Dong J, Hong Y, Shao Z, Liu Z (2010) Molecular cloning, purification, and characterization of a novel, acidic, pH-stable endoglucanase from Martelella mediterranea. J Microbiol 48(3):393–398

    CAS  PubMed  Google Scholar 

  • Dos Santos YQ, De Veras BO, De Franca AFJ, Gorlach-Lira K, Velasques J, Migliolo L, Dos Santos EA (2018) A new salt-tolerant thermostable cellulase from a marine Bacillus sp. strain. J Microbiol Biotechnol 28(7):1078–1085

    PubMed  Google Scholar 

  • Enache M, Kamekura M (2010) Hydrolytic enzymes of halophilic microorganisms and their economic values. Rom J Biochem 47(1):46–59

  • Fang Z, Fang W, Liu J, Hong Y, Peng H, Zhang X, Sun B, Xiao Y (2010) Cloning and characterization of a β-glucosidase from marine microbial metagenome with excellent glucose tolerance. J Microbiol Biotechnol 20(9):1351–1358

    CAS  PubMed  Google Scholar 

  • Fang GR, Li J, Cheng X, Cui Z (2012) Performance and spatial succession of a full-scale anaerobic plant treating high-concentration cassava bioethanol wastewater. J Microbiol Biotechnol 22(8):1148–1154

    Google Scholar 

  • Fatokun EN, Nwodo UU, Okoh AI (2016) Classical optimization of cellulase and xylanase production by a marine Streptomyces species. Appl Sci 6(10):286

    Google Scholar 

  • Fu X, Liu P, Lin L, Hong Y, Huang X, Meng X, Liu Z (2010) A novel endoglucanase (Cel9P) from a marine bacterium Paenibacillus sp. BME-14. Appl Biochem Biotechnol 160(6):1627–1636

    CAS  PubMed  Google Scholar 

  • Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68(10):5136–5141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gautam S, Bundela P, Pandey A, Khan J, Awasthi M, Sarsaiya S (2011) Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol Res Int 2011:810425. https://doi.org/10.4061/2011/810425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Sharma P, Dev K, Sourirajan A (2016) Halophilic bacteria of Lunsu produce an array of industrially important enzymes with salt tolerant activity. Biochem Res Int 2016:1–10

  • Harrison MJ, Nouwens AS, Jardine DR, Zachara NE, Gooley AA, Nevalainen H, Packer NH (1998) Modified glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. Eur J Biochem 256(1):119–127

    CAS  PubMed  Google Scholar 

  • Harshvardhan K, Mishra A, Jha B (2013) Purification and characterization of cellulase from a marine Bacillus sp. H1666: a potential agent for single step saccharification of seaweed biomass. J Mol Catal B Enzym 93:51–56

    CAS  Google Scholar 

  • Hasegawa S, Ura K, Tanaka H, Ojima T, Takagi Y (2012) Purification and biochemical characterization of a cellulase from the digestive organs of the short-spined sea urchin Strongylocentrotus intermedius. Fish Sci 78(5):1107–1115

    CAS  Google Scholar 

  • Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon J-P (1989) Cellulase families revealed by hydrophobic cluster analysi. Gene 81(1):83–95

    CAS  PubMed  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci 103(30):11206–11210

    CAS  PubMed  Google Scholar 

  • Hong J-H, Jang S, Heo YM, Min M, Lee H, Lee YM, Lee H, Kim J-J (2015) Investigation of marine-derived fungal diversity and their exploitable biological activities. Mar Drugs 13(7):4137–4155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyo-Min P, Yong-Suk L, Yong-Lark C (2019) Cloning, purification, and characterization of GH3 β-glucosidase, MtBgl85, from Microbulbifer thermotolerans DAU221. Peer J 7(e):7106

    Google Scholar 

  • Ito S (1997) Alkaline cellulases from alkaliphilic Bacillus: enzymatic properties, genetics, and application to detergents. Extremophiles 1(2):61–66

    PubMed  Google Scholar 

  • Jahromi ST, Barzkar N (2018a) Future direction in marine bacterial agarases for industrial applications. Appl Microbiol Biotechnol 102:6847–6863

    CAS  PubMed  Google Scholar 

  • Jahromi ST, Barzkar N (2018b) Marine bacterial chitinase as sources of energy, eco-friendly agent, and industrial biocatalyst. Int J Biol Macromol 120:2147–2154

    Google Scholar 

  • Jalis H, Ahmad A, Khan S, Sohail M (2014) Utilization of apple peels for the production of plant cell-wall degrading enzymes by Aspergillus fumigatus MS16. J Anim Plant Sci 24(2):64–67

    Google Scholar 

  • Jayasekara S, Ratnayake R (2019) Microbial Cellulases: An Overview and Applications. In: Martín ARPaMEE (ed) Cellulose. Intechopen, Rijeka

  • Ji S, Wang S, Tan Y, Chen X, Schwarz W, Li F (2012) An untapped bacterial cellulolytic community enriched from coastal marine sediment under anaerobic and thermophilic conditions. FEMS Microbiol Lett 335(1):39–46

    CAS  PubMed  Google Scholar 

  • Jung S, Jeong B-C, Hong S-K, Lee C-R (2017) Cloning, expression, and biochemical characterization of a novel acidic GH16 β-Agarase, AgaJ11, from Gayadomonas joobiniege G7. Appl Biochem Biotechnol 181(3):961–971

    CAS  PubMed  Google Scholar 

  • King AJ, Cragg SM, Li Y, Dymond J, Guille MJ, Bowles DJ, Bruce NC, Graham IA, McQueen-Mason SJ (2010) Molecular insight into lignocellulose digestion by a marine isopod in the absence of gut microbes. Proc Natl Acad Sci 107(12):5345–5350

    CAS  PubMed  Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13(4):345–351

    CAS  PubMed  Google Scholar 

  • Kuhad RC, Mehta G, Gupta R, Sharma KK (2010) Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 34(8):1189–1194

    CAS  Google Scholar 

  • Kulkarni C, Maurya C (2017) Characterization of the cellulase enzyme produced by Actinomycetes isolated from the mangrove coastal areas. Biosci Biotechnol Res Asia 14(2):685–690

    Google Scholar 

  • Kusaykin MI, Belik AA, Kovalchuk SN, Dmitrenok PS, Rasskazov VA, Isakov VV, Zvyagintseva TN (2017) A new recombinant endo-1, 3-β-d-glucanase from the marine bacterium Formosa algae KMM 3553: enzyme characteristics and transglycosylation products analysis. World J Microbiol Biotechnol 33(2):40

    PubMed  Google Scholar 

  • Lever M, Ho G, Cord-Ruwisch R (2010) Ethanol from lignocellulose using crude unprocessed cellulase from solid-state fermentation. Bioresour Technol 101(18):7083–7087

    CAS  Google Scholar 

  • Lewis G, Hunt C, Sanchez W, Treacher R, Pritchard G, Feng P (1996) Effect of direct-fed fibrolytic enzymes on the digestive characteristics of a forage-based diet fed to beef steers. J Anim Sci 74(12):3020–3028

    CAS  PubMed  Google Scholar 

  • Li Y, Yin Q, Ding M, Zhao F (2009) Purification, characterization and molecular cloning of a novel endo-beta-1, 4-glucanase AC-EG65 from the mollusc Ampullaria crossean. Comp Biochem Physiol Biochem Mol Biol 153(2):149–156

    Google Scholar 

  • Li P, Zhang DD, Wang XJ, Wang X, Cui ZJ (2012) Survival and performance of two cellulose-degrading microbial systems inoculated into wheat straw-amended soil. J Microbiol Biotechnol 22(1):126–132

    CAS  PubMed  Google Scholar 

  • Lima AO, Quecine MC, Fungaro MH, Andreote FD, Maccheroni W, Araújo WL, Silva-Filho MC, Pizzirani-Kleiner AA, Azevedo JL (2005) Molecular characterization of a β-1, 4-endoglucanase from an endophytic Bacillus pumilus strain. Appl Microbiol Biotechnol 68(1):57–65

    CAS  PubMed  Google Scholar 

  • Lin B, Lu G, Zheng Y, Xie W, Li S, Hu Z (2012) Gene cloning, expression and characterization of a neoagarotetraose-producing β-agarase from the marine bacterium Agarivorans sp. HZ105. World J Microbiol Biotechnol 28(4):1691–1697

    CAS  PubMed  Google Scholar 

  • Linton SM (2020) The structure and function of cellulase (endo-β-1, 4-glucanase) and hemicellulase (β-1, 3-glucanase and endo-β-1, 4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comp Biochem Physiol. https://doi.org/10.1016/j.cbpb.2019.110354

  • Liu J, Xue D, He K, Yao S (2012) Cellulase production in solid-state fermentation by marine Aspergillus sp. ZJUBE-1 and its enzymological properties. Adv Sci Lett 16(1):381–386

    CAS  Google Scholar 

  • Liu N, Mao X, Du Z, Mu B, Wei D (2014) Cloning and characterisation of a novel neoagarotetraose-forming-β-agarase, AgWH50A from Agarivorans gilvus WH0801. Carbohydr Res 388:147–151

    CAS  PubMed  Google Scholar 

  • Lo N, Watanabe H, Sugimura M (2003) Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc R Soc Lond B Biol Sci 270(suppl_1):S69–S72

    CAS  Google Scholar 

  • Long M, Yu Z, Xu X (2010) A novel β-agarase with high pH stability from marine Agarivorans sp. LQ48. Mar Biotechnol 12(1):62–69

    CAS  Google Scholar 

  • Luna GM (2015) Biotechnological Potential of Marine Microbes. In: Kim SK. (eds) Springer Handbook of Marine Biotechnology. Springer Handbooks. Springer, Berlin, Heidelberg

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macedo E, Cerqueira C, Souza D, Bispo A, Coelho R, Nascimento R (2013) Production of cellulose-degrading enzyme on sisal and other agro-industrial residues using a new Brazilian actinobacteria strain Streptomyces sp. SLBA-08. Braz J Chem Eng 30(4):729–735

    CAS  Google Scholar 

  • Mai Z, Yang J, Tian X, Li J, Zhang S (2013) Gene cloning and characterization of a novel salt-tolerant and glucose-enhanced β-glucosidase from a marine Streptomycete. Appl Biochem Biotechnol 169(5):1512–1522

    CAS  PubMed  Google Scholar 

  • Majidi S, Roayaei M, Ghezelbash G (2011) Carboxymethyl-cellulase and filter-paperase activity of new strains isolated from Persian Gulf. Microbiol J 1(1):8–16

    Google Scholar 

  • Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5(5):500–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers SP, Prindle B, Reynolds E (1960) Cellulolytic activity of marine fungi. Degradation of lignocellulose material. Tappi 43(6):534–538

    CAS  Google Scholar 

  • Milici M, Vital M, Tomasch J, Badewien TH, Giebel HA, Plumeier I, Wang H, Pieper DH, Wagner-Döbler I, Simon M (2017) Diversity and community composition of particle-associated and free-living bacteria in mesopelagic and bathypelagic Southern Ocean water masses: evidence of dispersal limitation in the Bransfield Strait. Limnol Oceanogr 62(3):1080–1095

    Google Scholar 

  • Moss S, Divakaran S, Kim B (2001) Stimulating effects of pond water on digestive enzyme activity in the Pacific white shrimp, Litopenaeus vannamei (Boone). Aquac Res 32(2):125–131

    CAS  Google Scholar 

  • Muñoz C, Hidalgo C, Zapata M, Jeison D, Riquelme C, Rivas M (2014) Use of cellulolytic marine bacteria for enzymatic pretreatment in microalgal biogas production. Appl Environ Microbiol 80(14):4199–4206

    PubMed  PubMed Central  Google Scholar 

  • Nandakumar M, Thakur M, Raghavarao K, Ghildyal N (1994) Mechanism of solid particle degradation by Aspergillus niger in solid state fermentation. Process Biochem 29(7):545–551

    CAS  Google Scholar 

  • Nikapitiya C, Oh C, De Zoysa M, Whang I, Kang D-H, Lee S-R, Kim S-J, Lee J (2010) Characterization of beta-1, 4-endoglucanase as a polysaccharide-degrading digestive enzyme from disk abalone, Haliotis discus discus. Aquac Int 18(6):1061–1078

    CAS  Google Scholar 

  • Nishida Y, Suzuki K-I, Kumagai Y, Tanaka H, Inoue A, Ojima T (2007) Isolation and primary structure of a cellulase from the Japanese sea urchin Strongylocentrotus nudus. Biochimie 89(8):1002–1011

    CAS  PubMed  Google Scholar 

  • Nurachman Z, Kurniasih SD, Puspitawati F, Hadi S, Radjasa OK, Natalia D (2010) Cloning of the endoglucanase gene from a Bacillus amyloliquefaciens PSM 3.1 in Escherichia coli revealed catalytic triad residues Thr-His-Glu. Am J Biochem Biotechnol 6(4):268–274

    CAS  Google Scholar 

  • Pang K-L, Jones EG (2017) Recent advances in marine mycology. Bot Mar 60(4):361–362

    Google Scholar 

  • Pavasovic M, Richardson NA, Anderson AJ, Mann D, Mather PB (2004) Effect of pH, temperature and diet on digestive enzyme profiles in the mud crab, Scylla serrata. Aquaculture 242(1-4):641–654

    CAS  Google Scholar 

  • Prasad M, Sethi R (2013) Optimization of cellulase production from a novel bacterial isolate Mesorhizobium sp. from marine source. Enzyme Res 4(1):39–45

    Google Scholar 

  • Premalatha N, Gopal NO, Jose PA, Anandham R, Kwon S-W (2015) Optimization of cellulase production by Enhydrobacter sp. ACCA2 and its application in biomass saccharification. Front Microbiol 6:1046

    PubMed  PubMed Central  Google Scholar 

  • Rahman MM, Inoue A, Ojima T (2014) Characterization of a GHF45 cellulase, AkEG21, from the common sea hare Aplysia kurodai. Front Chem 2:60. https://doi.org/10.3389/fchem.2014.0006

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajagopal G, Kannan S (2017) Systematic characterization of potential cellulolytic marine actinobacteria Actinoalloteichus sp. MHA15. Biotechnol Rep 13:30–36

    Google Scholar 

  • Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK (2010) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101(22):8798–8806

    CAS  PubMed  Google Scholar 

  • Ravindran C, Naveenan T, Varatharajan GR (2010) Optimization of alkaline cellulase production by the marine-derived fungus Chaetomium sp. using agricultural and industrial wastes as substrates. Bot Mar 53(3):275–282

    CAS  Google Scholar 

  • Richards TA, Jones MD, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522

    Google Scholar 

  • Robson LM, Chambliss GH (1989) Cellulases of bacterial origin. Enzym Microb Technol 11(10):626–644

    CAS  Google Scholar 

  • Rohrmann S, Molitoris H-P (1992) Screening for wood-degrading enzymes in marine fungi. Can J Bot 70(10):2116–2123

    CAS  Google Scholar 

  • Rong Y, Zhang L, Chi Z, Wang X (2015) A carboxymethyl cellulase from a marine yeast (Aureobasidium pullulans 98): its purification, characterization, gene cloning and carboxymethyl cellulose digestion. J Ocean U China 14(5):913–921

    CAS  Google Scholar 

  • Sabbadin F, Pesante G, Elias L, Besser K, Li Y, Steele-King C, Stark M, Rathbone DA, Dowle AA, Bates R (2018) Uncovering the molecular mechanisms of lignocellulose digestion in shipworms. Biotechnol Biofuels 11(1):59

    PubMed  PubMed Central  Google Scholar 

  • Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. Br Microbiol Res J 3(3):235

    CAS  Google Scholar 

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3. Biotech 5(4):337–353

    Google Scholar 

  • Saravanakumar K, Senthilraja P, Kathiresan K (2013) Bioethanol production by mangrove-derived marine yeast, Sacchromyces cerevisiae. J King Saud Univ Sci 25(2):121–127

    Google Scholar 

  • Sarkar S, Pramanik A, Mitra A, Mukherjee J (2010) Bioprocessing data for the production of marine enzymes. Mar Drugs 8(4):1323–1372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sawant SS, Salunke BK, Tran TK, Kim BS (2016) Lignocellulosic and marine biomass as resource for production of polyhydroxyalkanoates. Korean J Chem Eng 33(5):1505–1513

    CAS  Google Scholar 

  • Shariq M, Sohail M (2019) Application of Candida tropicalis MK-160 for the production of xylanase and ethanol. J King Saud Univ-Sci 31(4):1189–1194

    Google Scholar 

  • Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70(2):283–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siddhanta A, Prasad K, Meena R, Prasad G, Mehta GK, Chhatbar MU, Oza MD, Kumar S, Sanandiya ND (2009) Profiling of cellulose content in Indian seaweed species. Bioresour Technol 100(24):6669–6673

    CAS  PubMed  Google Scholar 

  • Smant G, Stokkermans JP, Yan Y, De Boer JM, Baum TJ, Wang X, Hussey RS, Gommers FJ, Henrissat B, Davis EL (1998) Endogenous cellulases in animals: isolation of β-1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci 95(9):4906–4911

    CAS  PubMed  Google Scholar 

  • Sohail M, Naseeb S, Sherwani SK, Sultana S, Aftab S, Shahzad S, Ahmad A, Khan SA (2009a) Distribution of hydrolytic enzymes among native fungi: Aspergillus the pre-dominant genus of hydrolase producer. Pak J Bot 41(5):2567–2582

    Google Scholar 

  • Sohail M, Siddiqi R, Ahmad A, Khan SA (2009b) Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnol 25(6):437–441

    CAS  Google Scholar 

  • Song JK, Kim D, Eun J-B, Choi B-D, Oh MJ, Jung SJ (2012) Identification of cellulolytic bacteria associated with tunic softness syndrome in the sea squirt, Halocynthia roretzi. Food Sci Biotechnol 21(5):1405–1411

    CAS  Google Scholar 

  • Spreinat A, Antranikian G (1990) Purification and properties of a thermostable pullulanase from Clostridium thermosulfurogenes EM1 which hydrolyses both α-1, 6 and α-1, 4-glycosidic linkages. Appl Microbiol Biotechnol 33(5):511–518

    CAS  Google Scholar 

  • Sukumaran RK, Singhania RR, Mathew GM, Pandey A (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34(2):421–424

    CAS  Google Scholar 

  • Sun J, Wang W, Yao C, Dai F, Zhu X, Liu J, Hao J (2018) Overexpression and characterization of a novel cold-adapted and salt-tolerant GH1 β-glucosidase from the marine bacterium Alteromonas sp. L82. J Microbiol 56(9):656–664

    CAS  PubMed  Google Scholar 

  • Suvorov M, Kumar R, Zhang H, Hutcheson S (2011) Novelties of the cellulolytic system of a marine bacterium applicable to cellulosic sugar production. Biofuels 2(1):59–70

    CAS  Google Scholar 

  • Suzuki K, Ojima T, Nishita K (2003) Purification and cDNA cloning of a cellulase from abalone Haliotis discus hannai. Eur J Biochem 270(4):771–778

    CAS  PubMed  Google Scholar 

  • Tachibana N, Saitoh A, Shibata H, Saitoh M, Fujita S, Ohmachi T, Kato Y, Takagaki K, Yoshida T (2005) Carboxymethyl cellulase from mid-gut gland of marine mollusc, Patinopecten yessoensis. J Appl Glycosci 52(2):107–113

    CAS  Google Scholar 

  • Tajuddin N, Rizman-Idid M, Convey P, Alias SA (2018) Thermal adaptation in a marine-derived tropical strain of Fusarium equiseti and polar strains of Pseudogymnoascus spp. under different nutrient sources. Bot Mar 61(1):9–20

    CAS  Google Scholar 

  • Tanimura A, Liu W, Yamada K, Kishida T, Toyohara H (2013) Animal cellulases with a focus on aquatic invertebrates. Fish Sci 79(1):1–13

    CAS  Google Scholar 

  • Techapun C, Poosaran N, Watanabe M, Sasaki K (2003) Optimization of aeration and agitation rates to improve cellulase-free xylanase production by thermotolerant Streptomyces sp. Ab106 and repeated fed-batch cultivation using agricultural waste. J Biosci Bioeng 95(3):298–301

    CAS  PubMed  Google Scholar 

  • Thongekkaew J, Ikeda H, Masaki K, Iefuji H (2013) Fusion of cellulose binding domain from Trichoderma reesei CBHI to Cryptococcus sp. S-2 cellulase enhances its binding affinity and its cellulolytic activity to insoluble cellulosic substrates. Enzym Microb Technol 52(4-5):241–246

    CAS  Google Scholar 

  • Tomme P, Driver DP, Amandoron EA, Miller R, Antony R, Warren J, Kilburn DG (1995a) Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain. J Bacteriol 177(15):4356–4363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomme P, Warren R, Gilkes N (1995b) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81

    CAS  PubMed  Google Scholar 

  • Trincone A (2011) Marine biocatalysts: enzymatic features and applications. Mar Drugs 9(4):478–499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi N, Gupta V, Kumar M, Kumari P, Reddy C, Jha B (2011a) An alkali-halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohydr Polym 83(2):891–897

    CAS  Google Scholar 

  • Trivedi N, Gupta V, Kumar M, Kumari P, Reddy C, Jha B (2011b) Solvent tolerant marine bacterium Bacillus aquimaris secreting organic solvent stable alkaline cellulase. Chemosphere 83(5):706–712

    CAS  PubMed  Google Scholar 

  • Trivedi N, Gupta V, Reddy C, Jha B (2013) Detection of ionic liquid stable cellulase produced by the marine bacterium Pseudoalteromonas sp. isolated from brown alga Sargassum polycystum C. Agardh. Bioresour Technol 132:313–319

    CAS  PubMed  Google Scholar 

  • Trivedi N, Reddy C, Radulovich R, Jha B (2015) Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Res 9:48–54

    Google Scholar 

  • Trivedi N, Reddy C, Lali A (2016) Marine microbes as a potential source of cellulolytic enzymes. Adv Food Nutr Res 79:27–41

    CAS  PubMed  Google Scholar 

  • Tsuji A, Sato S, Kondo A, Tominaga K, Yuasa K (2012) Purification and characterization of cellulase from North Pacific krill (Euphausia pacifica). Analysis of cleavage specificity of the enzyme. Comp Biochem Physiol B Biochem Mol Biol 163(3-4):324–333

    CAS  PubMed  Google Scholar 

  • Tsuji A, Tominaga K, Nishiyama N, Yuasa K (2013) Comprehensive enzymatic analysis of the cellulolytic system in digestive fluid of the Sea Hare Aplysia kurodai. Efficient glucose release from sea lettuce by synergistic action of 45 kDa endoglucanase and 210 kDa ß-glucosidase. PLoS One 8(6):e65418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji A, Kuwamura S, Shirai A, Yuasa K (2017) Identification and characterization of a 25 kDa protein that is indispensable for the efficient saccharification of Eisenia bicyclis in the digestive fluid of Aplysia kurodai. PLoS One 12(1):e0170669

    PubMed  PubMed Central  Google Scholar 

  • Twomey L, Pluske J, Rowe J, Choct M, Brown W, McConnell M, Pethick D (2003) The effects of increasing levels of soluble non-starch polysaccharides and inclusion of feed enzymes in dog diets on faecal quality and digestibility. Anim Feed Sci Technol 108(1-4):71–82

    CAS  Google Scholar 

  • Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sust Energ Rev 41:402–412

    CAS  Google Scholar 

  • Veiga M, Esparis A, Fabregas J (1983) Isolation of cellulolytic actinomycetes from marine sediments. Appl Environ Microbiol 46(1):286–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe H, Tokuda G (2001) Animal cellulases. Cell Mol Life Sci 58(9):1167–1178

    CAS  PubMed  Google Scholar 

  • Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394(6691):330–331

    CAS  PubMed  Google Scholar 

  • Wyman C (1996) Handbook on bioethanol: production and utilization. 1st edn. CRC press

  • Xia L, Cen P (1999) Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry. Process Biochem 34(9):909–912

    CAS  Google Scholar 

  • Xu P-N, Distel D (2004) Purification and characterization of an endo-1, 4-β-D glucanase from the cellulolytic system of the wood-boring marine mollusk Lyrodus pedicellatus (Bivalvia: Teredinidae). Mar Biol 144(5):947–953

    CAS  Google Scholar 

  • Xu B, Janson JC, Sellos D (2001) Cloning and sequencing of a molluscan endo-β-1, 4-glucanase gene from the blue mussel, Mytilus edulis. Eur J Biochem 268(13):3718–3727

    CAS  PubMed  Google Scholar 

  • Xue D-S, Chen H-Y, Lin D-Q, Guan Y-X, Yao S-J (2012) Optimization of a natural medium for cellulase by a marine Aspergillus niger using response surface methodology. Appl Biochem Biotechnol 167(7):1963–1972

    CAS  PubMed  Google Scholar 

  • Yang W, Meng F, Peng J, Han P, Fang F, Ma L, Cao B (2014) Isolation and identification of a cellulolytic bacterium from the Tibetan pig’s intestine and investigation of its cellulase production. Electron J Biotechnol 17(6):262–267

    CAS  Google Scholar 

  • Yin S-J, Zhang L, Zhang L, Wan J, Song W, Jiang X, Park Y-D, Si Y-X (2018) Metabolic responses and arginine kinase expression of juvenile cuttlefish (Sepia pharaonis) under salinity stress. Int J Biol Macromol 113:881–888

    CAS  PubMed  Google Scholar 

  • Yoon LW, Ang TN, Ngoh GC, Chua ASM (2014) Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass Bioenergy 67:319–338

    CAS  Google Scholar 

  • Yu H-Y, Li X (2015) Alkali-stable cellulase from a halophilic isolate, Gracilibacillus sp. SK1 and its application in lignocellulosic saccharification for ethanol production. Biomass Bioenergy 81:19–25

    CAS  Google Scholar 

  • Zaky AS, Tucker GA, Daw ZY, Du C (2014) Marine yeast isolation and industrial application. FEMS Yeast Res 14(6):813–825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Chi Z (2007) Screening and identification of a cellulase producing marine yeast and optimization of medium and cultivation conditions for cellulase production. J Ocean Univ China 37:101–108

    CAS  Google Scholar 

  • Zhang C, Kim S-K (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8(6):1920–1934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y-HP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481

    CAS  Google Scholar 

  • Zhao H, Chockalingam K, Chen Z (2002) Directed evolution of enzymes and pathways for industrial biocatalysis. Curr Opin Biotechnol 13(2):104–110

    CAS  PubMed  Google Scholar 

  • Zhao L, Pang Q, Xie J, Pei J, Wang F, Fan S (2013) Enzymatic properties of Thermoanaerobacterium thermosaccharolyticum β-glucosidase fused to Clostridium cellulovorans cellulose binding domain and its application in hydrolysis of microcrystalline cellulose. BMC Biotechnol 13(1):101. 1-8. https://doi.org/10.1186/1472-6750-13-101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noora Barzkar.

Ethics declarations

The authors are aware with the ethical responsibilities required by the journal and are committed to comply them.

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzkar, N., Sohail, M. An overview on marine cellulolytic enzymes and their potential applications. Appl Microbiol Biotechnol 104, 6873–6892 (2020). https://doi.org/10.1007/s00253-020-10692-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10692-y

Keywords

Navigation