Skip to main content

Advertisement

Log in

3D Flower–Like FeWO4/CeO2 Hierarchical Architectures on rGO for Durable and High-Performance Microalgae Biophotovoltaic Fuel Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A facile chemical reduction approach is adopted for the synthesis of iron tungstate (FeWO4)/ceria (CeO2)–decorated reduced graphene oxide (rGO) nanocomposite. Surface morphological studies of rGO/FeWO4/CeO2 composite reveal the formation of hierarchical FeWO4 flower–like microstructures on rGO sheets, in which the CeO2 nanoparticles are decorated over the FeWO4 microstructures. The distinct anodic peaks observed for the cyclic voltammograms of studied electrodes under light/dark regimes validate the electroactive proteins present in the microalgae. With the cumulative endeavors of three-dimensional FeWO4 microstructures, phase effect between rGO sheet and FeWO4/CeO2, highly exposed surface area, and light harvesting property of CeO2 nanoparticles, the relevant rGO/FeWO4/CeO2 nanocomposite demonstrates high power and stable biophotovoltaic energy generation compared with those of previous reports. Thus, these findings construct a distinct horizon to tailor a ternary nanocomposite with high electrochemical activity for the construction of cost-efficient and environmentally benign fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Cetinkaya, A. Y., Ozdemir, O. K., Demir, A., & Ozkaya, B. (2017). Electricity production and characterization of high-strength industrial wastewaters in microbial fuel cell. Applied Biochemistry and Biotechnology, 182(2), 468–481.

    CAS  PubMed  Google Scholar 

  2. Wang, F., Matsubara, H., Nittami, T., & Fujita, M. (2019). Utilization of a silicone rubber membrane for passive oxygen supply in a microbial fuel cell treating carbon and nitrogen from synthetic coke-oven wastewater. Applied Biochemistry and Biotechnology, 189(1), 217–232.

    CAS  PubMed  Google Scholar 

  3. Wang, Y., Wen, Q., Chen, Y., Yin, J., & Duan, T. (2016). Enhanced performance of a microbial fuel cell with a capacitive bioanode and removal of Cr(VI) using the intermittent operation. Applied Biochemistry and Biotechnology, 180(7), 1372–1385.

    CAS  PubMed  Google Scholar 

  4. Li, X., Zhang, X., Zhao, X., Yu, B., Weng, L., & Li, Y. (2019). Efficient removal of metolachlor and bacterial community of biofilm in bioelectrochemical reactors. Applied Biochemistry and Biotechnology, 189(2), 384–395.

    CAS  PubMed  Google Scholar 

  5. Ellabban, O., Abu-Rub, H., & Blaabjerg, F. (2014). Renewable energy resources: current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39, 748–764.

    Google Scholar 

  6. Gnana Kumar, G., Sarathi, V. S., & Nahm, K. S. (2013). Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosensors and Bioelectronics, 43, 461–475.

    PubMed  Google Scholar 

  7. Lewis, N. S. (2016). Research opportunities to advance solar energy utilization. Science, 351(6271), aad1920.

  8. Shaner, M. R., Atwater, H. A., Lewis, N. S., & McFarland, E. W. (2016). A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy and Environmental Science, 9(7), 2354–2371.

  9. Sivula, K., & Van De Krol, R. (2016). Semiconducting materials for photoelectrochemical energy conversion. Nature Reviews Materials, 1(2), 15010.

    CAS  Google Scholar 

  10. Polman, A., Knight, M., Garnett, E. C., Ehrler, B., & Sinke, W. C. (2016). Photovoltaic materials: present efficiencies and future challenges. Science, 352(6283), aad4424-1-10.

    Google Scholar 

  11. Jacobsson, T. J., Fjallstrom, V., Edoff, M., & Edvinsson, T. (2014). Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again. Energy and Environmental Science, 7(7), 2056–2070.

    CAS  Google Scholar 

  12. Chen, Y. S., Manser, J. S., & Kamat, P. V. (2015). All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production. Journal of the American Chemical Society, 137(2), 974–981.

    CAS  PubMed  Google Scholar 

  13. Ng, F. L., Jaafar, M. M., Phang, S.-M., Chan, Z., Salleh, N. A., Azmi, S. Z., Yunus, K., Fisher, A. C., & Periasamy, V. (2014). Reduced graphene oxide anodes for potential application in algae biophotovoltaic platforms. Nature Scientific Reports, 4, 7562.

    CAS  Google Scholar 

  14. Driver, A., & Bombelli, P. (2011). Biophotovoltaics energy from algae. Catalyst, 13–15.

  15. Bombelli, P., Bradley, R. W., Scott, A. M., Philips, A. J., McCormick, A. J., Cruz, S. M., Anderson, A., Yunus, K., Bendall, D. S., Cameron, P. J., Davies, J. M., Smith, A. G., Howe, C. J., & Fisher, A. C. (2011). Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy and Environmental Science, 4(11), 4690–4698.

    CAS  Google Scholar 

  16. Bradley, R. W., Bombelli, P., Rowden, S. J., & Howe, C. J. (2012). Biological photovoltaics: intra-and extra-cellular electron transport by cyanobacteria. Biochemical Society Transactions, 40(6), 1302–1307.

    CAS  PubMed  Google Scholar 

  17. Subhash, G. V., Chandra, R., & Mohan, S. V. (2013). Microalgae mediated bio-electrocatalytic fuel cell facilitates bioelectricity generation through oxygenic photomixotrophic mechanism. Bioresource Technology, 136, 644–653.

    Google Scholar 

  18. Ciniciato, G. P. M. K., Ng, F. L., Phang, S.-M., Jaafar, M. M., Fisher, A. C., Yunus, K., & Periasamy, V. (2016). Investigating the association between photosynthetic efficiency and generation of biophotoelectricity in autotrophic microbial fuel cells. Nature Scientific Reports, 6, 31193.

  19. Hasan, K., Çevik, E., Sperling, E., Packer, M. A., Leech, D., & Gorton, L. (2015). Photoelectrochemical wiring of Paulschulzia pseudovolvox (algae) to osmium polymer modified electrodes for harnessing solar energy. Advanced Energy Materials, 5(22), 1501100(1-11).

    Google Scholar 

  20. Samsonoff, N., Ooms, M. D., & Sinton, D. (2014). A photosynthetic-plasmonic-voltaic cell: excitation of photosynthetic bacteria and current collection through a plasmonic substrate. Applied Physics Letters, 104(4), 043704–043708.

    Google Scholar 

  21. Thorne, R., Hu, H., Schneider, K., Bombelli, P., Fisher, A., Peter, L. M., Dent, A., & Cameron, P. J. (2011). Porous ceramic anode materials for photo-microbial fuel cells. Journal of Materials Chemistry, 21(44), 18055–18060.

    CAS  Google Scholar 

  22. McCormick, A. J., Bombelli, P., Scott, A. M., Philips, A. J., Smith, A. G., Fisher, A. C., & Howe, C. J. (2011). Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy and Environmental Science, 4(11), 4699–4709.

    CAS  Google Scholar 

  23. Ma, Y., Guo, Y., Jiang, H., Qu, D., Liu, J., Kang, W., Yi, Y., Zhang, W., Shi, J., & Han, Z. (2015). Preparation of network-like ZnO–FeWO4 mesoporous heterojunctions with tunable band gaps and their enhanced visible light photocatalytic performance. New Journal of Chemistry, 39(7), 5612–5620.

    CAS  Google Scholar 

  24. Srivastava, M., Das, A. K., Khanra, P., Uddin, M. E., Kim, N. H., & Lee, J. H. (2013). Characterizations of in situ grown ceria nanoparticles on reduced graphene oxide as a catalyst for the electrooxidation of hydrazine. Journal of Materials Chemistry A, 1(34), 9792–9801.

    CAS  Google Scholar 

  25. Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339.

    CAS  Google Scholar 

  26. Rani, G. J., Sathiya, S. M., & Rajan, M. A. (2016). Self-assembled rGO/FeWO4 flower structures by a solvothermal reaction with enhanced catalytic activity for dye degradation. Chemical Science Review Letters, 5, 101–109.

    CAS  Google Scholar 

  27. Phang, S.-M., & Chu, W.L. (1999). Catalogue of strains, University of Malaya Algae Culture Collection (UMACC). Kuala Lumpur: University of Malaya.

  28. Karthikeyan, C., Raj kumar, T., Pannipara, M., Al-Sehemi, A. G., Senthilkumar, N., Angelaalincy, M. J., Varalakshmi, P., Phang, S.-M., Periasamy, V., & Gnana Kumar, G. (2019). Ruthenium oxide/tungsten oxide composite nanofibers as anode catalysts for the green energy generation of chlorella vulgaris mediated biophotovoltaic cells. Environmental Progress & Sustainable Energy, 38(6), e13262.

  29. Ng, F. L., Phang, S. M., Periasamy, V., Yunus, K., & Fisher, A. C. (2014). Evaluation of algal biofilms on indium tin oxide (ITO) for use in biophotovoltaic platforms based on photosynthetic performance. PLoS One, 9(5), e97643(1-13).

    Google Scholar 

  30. Zhang, D., Lu, C., Ni, Y., Xu, Z., & Zhang, W. (2013). Effect of water on size-controllable synthesis of mesoporous Fe3O4 microspheres and their applications in waste water treatment. CrystEngComm, 15(23), 4755–4764.

    CAS  Google Scholar 

  31. Zhou, Y. X., Yao, H. B., Zhang, Q., Gong, J. Y., Liu, S. J., & Yu, S. H. (2009). Hierarchical FeWO4 microcrystals: solvothermal synthesis and their photocatalytic and magnetic properties. Inorganic Chemistry, 48(3), 1082–1090.

    CAS  PubMed  Google Scholar 

  32. Zhang, J., Wang, Y., Li, S., Wang, X., Huang, F., Xie, A., & Shen, Y. (2011). Controlled synthesis, growth mechanism and optical properties of FeWO4 hierarchical microstructures. CrystEngComm, 13(19), 5744–5750.

    CAS  Google Scholar 

  33. Qian, J., Peng, Z., Wu, D., & Fu, X. (2014). FeWO4/FeS core/shell nanorods fabricated by thermal evaporation. Materials Letters, 122, 86–89.

  34. Wetchakun, N., Chaiwichain, S., Inceesungvorn, B., Pingmuang, K., Phanichphant, S., Minett, A. I., & Chen, J. (2012). BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity. ACS Applied Materials and Interfaces, 4(7), 3718–3723.

    CAS  PubMed  Google Scholar 

  35. Xie, A., Wang, S., Liu, W., Zhang, J., Yang, Y., & Han, J. (2015). Rapid hydrothermal synthesis of CeO2 nanoparticles with (2 2 0)-dominated surface and its CO catalytic performance. Materials Research Bulletin, 62, 148–152.

    CAS  Google Scholar 

  36. Buvaneswari, K., Karthiga, R., Kavitha, B., Rajarajan, M., & Suganthi, A. (2015). Effect of FeWO4 doping on the photocatalytic activity of ZnO under visible light irradiation. Applied Surface Science, 356, 333–340.

    CAS  Google Scholar 

  37. Kovács, T. N., Pokol, G., Gáber, F., Nagy, D., Igricz, T., Lukács, I. E., Fogarassy, Z., Balázsi, K., & Szilágyi, I. M. (2017). Preparation of iron tungstate (FeWO4) nanosheets by hydrothermal method. Materials Research Bulletin, 95, 563–569.

    Google Scholar 

  38. Salamon, J., Sathishkumar, Y., Ramachandran, K., Lee, Y. S., Yoo, D. J., & Kim, A. R. (2015). One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine. Biosensors and Bioelectronics, 64, 269–276.

    CAS  PubMed  Google Scholar 

  39. Vinothkannan, M., Karthikeyan, C., Kim, A. R., & Yoo, D. J. (2015). One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 256–264.

    CAS  Google Scholar 

  40. Zamiri, R., Ahangar, H. A., Kaushal, A., Zakaria, A., Zamiri, G., Tobaldi, D., & Ferreira, J. M. F. (2015). Dielectrical properties of CeO2 nanoparticles at different temperatures. PLoS One, 10(4), 1–11.

    Google Scholar 

  41. Rani, G. J., Babu, K. J., & Rajan, M. J. (2016). Watsonia meriana flower like Fe3O4/reduced graphene oxide nanocomposite for the highly sensitive and selective electrochemical sensing of dopamine. Journal of Alloys and Compounds, 688, 500–512.

    CAS  Google Scholar 

  42. Gnana kumar, G., Kirubaharan, C. J., Udhayakumar, S., Ramachandran, K., Karthikeyan, C., Renganathan, R., & Nahm, K. S. (2014). Synthesis, structural, and morphological characterizations of reduced graphene oxide-supported polypyrrole anode catalysts for improved microbial fuel cell performances. ACS Sustainable Chemistry & Engineering, 2(10), 2283–2290.

    CAS  Google Scholar 

  43. He, G. L., Chen, M. J., Liu, Y. Q., Li, X., Liu, Y. J., & Xu, Y. H. (2015). Hydrothermal synthesis of FeWO4-graphene composites and their photocatalytic activities under visible light. Applied Surface Science, 351, 474–479.

    CAS  Google Scholar 

  44. Siriwong, P., Thongtem, T., Phuruangrat, A., & Thongtem, S. (2011). Hydrothermal synthesis, characterization, and optical properties of wolframite ZnWO4 nanorods. CrystEngComm, 13(5), 1564–1569.

    CAS  Google Scholar 

  45. Jiang, L., Yao, M., Liu, B., Li, Q., Liu, R., Lv, H., Lu, S., Gong, C., Zou, B., Cui, T., & Liu, B. (2012). Controlled synthesis of CeO2/graphene nanocomposites with highly enhanced optical and catalytic properties. Journal of Physical Chemistry C, 116(21), 11741–11745.

    CAS  Google Scholar 

  46. Du, X., Zhang, D., Shi, L., Gao, R., & Zhang, J. (2012). Morphology dependence of catalytic properties of Ni/CeO2 nanostructures for carbon dioxide reforming of methane. The Journal of Physical Chemistry C, 116(18), 10009–10016.

    CAS  Google Scholar 

  47. Kumar, A. M., Rahman, M. M., & Gasem, Z. M. (2015). A promising nanocomposite from CNTs and nano-ceria: nanostructured fillers in polyurethane coatings for surface protection. RSC Advances, 5(78), 63537–63544.

    Google Scholar 

  48. Ramachandran, K., Babu, K., Kumar, G. G., Kim, A. R., & Yoo, D. J. (2015). One-pot synthesis of graphene supported CuO nanorods for the electrochemical hydrazine sensor applications. Science of Advanced Materials, 7(2), 329–336.

    CAS  Google Scholar 

  49. Kirubaharan, C. J., Yoo, D. J., & Kim, A. R. (2016). Graphene/poly (3, 4-ethylenedioxythiophene)/Fe3O4 nanocomposite–an efficient oxygen reduction catalyst for the continuous electricity production from wastewater treatment microbial fuel cells. International Journal of Hydrogen Energy, 41(30), 13208–13219.

    Google Scholar 

  50. McCormick, A. J., Bombelli, P., Bradley, R. W., Thorne, R., Wenzel, T., & Howe, C. J. (2015). Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy and Environmental Science, 8(4), 1092–1109.

    CAS  Google Scholar 

  51. Goubard-Bretesché, N., Crosnier, O., Payen, C., Favier, F., & Brousse, T. (2015). Nanocrystalline FeWO4 as a pseudocapacitive electrode material for high volumetric energy density supercapacitors operated in an aqueous electrolyte. Electrochemistry Communications, 57, 61–64.

    Google Scholar 

  52. Zhang, J., Cao, Y., Wang, C. A., & Ran, R. (2016). Design and preparation of MnO2/CeO2–MnO2 double-shelled binary oxide hollow spheres and their application in CO oxidation. ACS Applied Materials and Interfaces, 8(13), 8670–8677.

    CAS  PubMed  Google Scholar 

  53. Peng, S., Han, X., Li, L., Zhu, Z., Cheng, F., Srinivansan, M., Adams, S., & Ramakrishna, S. (2016). Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small, 12(10), 1359–1368.

    CAS  PubMed  Google Scholar 

  54. Schmidbauer, E., Schanz, U., & Yu, F. J. (1991). Electrical transport properties of mono-and polycrystalline FeWO4. Journal of Physics. Condensed Matter, 3(28), 5341–5352.

    CAS  Google Scholar 

  55. Cao, X., Chen, Y., Jiao, S., Fang, Z., Xu, M., Liu, X., Li, L., Pang, G., & Feng, S. (2014). Magnetic photocatalysts with a p–n junction: Fe3O4 nanoparticle and FeWO4 nanowire heterostructures. Nanoscale, 6(21), 12366–12370.

    CAS  PubMed  Google Scholar 

  56. Ou, D. R., Mori, T., Togasaki, H., Takahashi, M., Ye, F., & Drennan, J. (2011). Microstructural and metal-support interactions of the Pt–CeO2/C catalysts for direct methanol fuel cell application. Langmuir, 27(7), 3859–3866.

    CAS  PubMed  Google Scholar 

  57. Gnana kumar, G., Kirubaharan, C. J., Udhayakumar, S., Karthikeyan, C., & Nahm, K. S. (2014). Conductive polymer/graphene supported platinum nanoparticles as anode catalysts for the extended power generation of microbial fuel cells. Industrial and Engineering Chemistry Research, 53(43), 16883–16893.

    CAS  Google Scholar 

  58. Jadhav, D. A., Jain, S. C., & Ghangrekar, M. M. (2017). Simultaneous wastewater treatment, algal biomass production and electricity generation in clayware microbial carbon capture cells. Applied Biochemistry and Biotechnology, 183(3), 1076–1092.

  59. Ng, F. L., Phang, S. M., Periasamy, V., Yunus, K., & Fisher, A. C. (2014). Algae biofilm on indium tin oxide electrode for use in biophotovoltaic platforms. Advanced Materials Research, 895, 116–121.

    Google Scholar 

  60. Sekar, N., Umasankar, Y., & Ramasamy, R. P. (2014). Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo-bioelectrochemical cells. Physical Chemistry Chemical Physics, 16(17), 7862–7871.

    CAS  PubMed  Google Scholar 

  61. Fu, C. C., Hung, T. C., Wu, W. T., Wen, T. C., & Su, C. H. (2010). Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis. Biochemical Engineering Journal, 52(2–3), 175–180.

    CAS  Google Scholar 

  62. Zou, Y., Pisciotta, J., Billmyre, R. B., & Baskakov, I. V. (2009). Photosynthetic microbial fuel cells with positive light response. Biotechnology and Bioengineering, 104(5), 939–946.

    CAS  PubMed  Google Scholar 

  63. De Caprariis, B., De Filippis, P., Di Battista, A., Di Palma, L., & Scarsella, M. (2014). Exoelectrogenic activity of a green microalgae, Chlorella vulgaris, in a bio-photovoltaic cells (BPVs). Chemical Engineering Transactions, 38, 523–528.

    Google Scholar 

  64. Shahparnia, M., Packirisamy, M., Juneau, P., & Zazubovich, V. (2015). Micro photosynthetic power cell for power generation from photosynthesis of algae. Technology, 3(02N03), 119–126.

Download references

Funding

This research effort was supported by the Council of Scientific and Industrial Research (CSIR), New Delhi-Major Project Grant No. 01(2997)19/EMR-II. The authors M. P and A. S received funding from the Deanship of Scientific Research at King Khalid University for this work through General Research Project under grant number G.R.P.205-40. This research effort was also supported by the Newton Prize Grant 2017 (IF008-2018) and Higher Institution Centre of Excellence (HICoE) Fund, Ministry of Education, Malaysia: Air, ocean and land interaction (IOES-2014F).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vengadesh Periasamy, Siew-Moi Phang or G. Gnana kumar.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethics Approval and Consent to Participate

Not applicable.

Research Involving Human Participants and/or Animals

The authors declare that this research does not involve human participants and animals.

Consent for Publication

All authors consented to the publication of this work. Authors all confirm the permission of publication for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeyan, C., Jenita Rani, G., Ng, FL. et al. 3D Flower–Like FeWO4/CeO2 Hierarchical Architectures on rGO for Durable and High-Performance Microalgae Biophotovoltaic Fuel Cells. Appl Biochem Biotechnol 192, 751–769 (2020). https://doi.org/10.1007/s12010-020-03352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03352-4

Keywords

Navigation