Skip to main content
Log in

Cys-functionalized AuNP substrates for improved sensing of the marine toxin STX by dynamic surface-enhanced Raman spectroscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Saxitoxin (STX) as one of the most harmful and typical paralytic shellfish toxins, is posing a serious threat to environmental and human health, thus it is essential to develop a sensitive and reliable analytical method for STX detection. Herein, we proposed a strategy for rapid and sensitive detection of STX with surface-enhanced Raman spectroscopy (SERS), by employing cysteine modified gold nanoparticles (Cys-AuNPs) as SERS probe to capture STX molecules through electrostatic interactions and multiple hydrogen bonds between Cys and STX molecules. Moreover, the XPS and zeta potential results indicated that Cys could bond to AuNPs through Au-S bonds and the addition of STX could induce the efficient aggregation of Cys-AuNPs owing to the presence of electrostatic interactions and multiple hydrogen bonds between Cys and STX molecules. Furthermore, considering the high sensitivity and stability of the dynamic surface-enhanced Raman spectroscopy (D-SERS) strategy with the formation of a 3D hotspot matrix, the highly sensitive detection of STX was realized to a level of 1 × 10−7 M by using the D-SERS strategy. Consequently, Cys-AuNPs as high affinity substrates can provide high sensitivity for the detection of STX through the D-SERS strategy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sellner KG, Doucette GJ, Kirkpatrick GJ. Harmful algal blooms: causes, impacts and detection. J Ind Microbiol Biotechnol. 2003;30(7):383–406.

    CAS  PubMed  Google Scholar 

  2. Gao S, Zheng X, Wu J. A biolayer interferometry-based competitive biosensor for rapid and sensitive detection of saxitoxin. Sensors Actuators B Chem. 2017;246:169–74.

    CAS  Google Scholar 

  3. Cusick KD, Sayler GS. An overview on the marine neurotoxin, saxitoxin: genetics, molecular targets, methods of detection and ecological functions. Mar Drugs. 2013;11(4):991–1018.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pearman WF, Angel SM, Ferry JL, Hall S. Characterization of the Ag mediated surface-enhanced Raman spectroscopy of Saxitoxin. Appl Spectrosc. 2008;62(7):727–32.

    CAS  PubMed  Google Scholar 

  5. Humpage AR, Magalhaes VF, Froscio SM. Comparison of analytical tools and biological assays for detection of paralytic shellfish poisoning toxins. Anal Bioanal Chem. 2010;397(5):1655–71.

    CAS  PubMed  Google Scholar 

  6. Park DL, Adams WN, Graham SL, Jackson RC. Variability of mouse bioassay for determination of paralytic shellfish poisoning toxins. J Assoc Off Anal Chem. 1986;69(3):547–50.

    CAS  PubMed  Google Scholar 

  7. Usleber E, Dietrich R, Btrick C, et al. Immunoassay methods for paralytic shellfish poisoning toxins. J AOAC Int. 2001;84(5):1649–56.

    CAS  PubMed  Google Scholar 

  8. Bragg WA, Lemire SW, Coleman RM, Hamelin EI, Johnson RC. Detection of human exposure to saxitoxin and neosaxitoxin in urine by online-solid phase extraction-liquid chromatography-tandem mass spectrometry. Toxicon. 2015;99:118–24.

    CAS  PubMed  Google Scholar 

  9. Lawrence JF, Niedzwiadek B, Menard C. Quantitative determination of paralytic shellfish poisoning toxins in shellfish using prechromatographic oxidation and liquid chromatography with fluorescence detection: collaborative study. J AOAC Int. 2005;88(6):1714–32.

    CAS  PubMed  Google Scholar 

  10. Peng RY, Si YM, Deng T, Zheng J, Li JS, Yang RH, et al. A novel SERS nanoprobe for the ratiometric imaging of hydrogen peroxide in living cells. Chem Commun. 2016;52(55):8553–6.

    CAS  Google Scholar 

  11. Li DW, Qu LL, Hu K, Long YT, Tian H. Monitoring of endogenous hydrogen Sulfide in living cells using surface-enhanced Raman scattering. Angew Chem Int Ed. 2015;54(43):12758–61.

    CAS  Google Scholar 

  12. Han C, Yao Y, Wang W, Qu L, Bradley L, Sun S, et al. Rapid and sensitive detection of sodium saccharin in soft drinks by silver nanorod array SERS substrates. Sensors Actuators B Chem. 2017;251:272–9.

    CAS  Google Scholar 

  13. He H, Li P, Tang XH, Lin DY, Xie AJ, Shen YH, et al. Developing cysteamine-modified SERS substrate for detection of acidic pigment with weak surface affinity. Spectrochim Acta Pt A. 2019;212:293–9.

    CAS  Google Scholar 

  14. Yu BR, Ge MH, Li P, Xie QW, Yang LB. Development of surface-enhanced Raman spectroscopy application for determination of illicit drugs: towards a practical sensor. Talanta. 2019;191:1–10.

    PubMed  Google Scholar 

  15. Li XH, Chen GY, Yang LB, Jin Z, Liu JH. Multifunctional au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv Funct Mater. 2010;20(17):2815–24.

    CAS  Google Scholar 

  16. Alvarez-Puebla RA, Liz-Marzan LM. SERS detection of small inorganic molecules and ions. Angew Chem Int Ed. 2012;51(45):11214–23.

    CAS  Google Scholar 

  17. Cao XM, Qin M, Li P, Zhou BB, Tang XH, Ge MH, et al. Probing catecholamine neurotransmitters based on iron-coordination surface-enhanced resonance Raman spectroscopy label. Sensors Actuators B Chem. 2018;268:350–8.

    CAS  Google Scholar 

  18. Li JY, Hu XY, Zhou YR, Zhang L, Ge ZP, Wang XR, et al. β-Cyclodextrin-Stabilized Au Nanoparticles for the Detection of Butyl Benzyl Phthalate. ACS Appl Nano Mat. 2019;2:2743–51.

    CAS  Google Scholar 

  19. Li Q, Lu ZC, Tan XC, Xiao XY, Wang P, Wu L, et al. Ultrasensitive detection of aflatoxin B-1 by SERS aptasensor based on exonuclease-assisted recycling amplification. Biosens Bioelectron. 2017;97:59–64.

    CAS  PubMed  Google Scholar 

  20. Cheng S, Zheng B, Yao DB, Wang Y, Tian JJ, Liu LH, et al. Determination of Saxitoxin by Aptamer-based surface-enhanced Raman scattering. Anal Lett. 2019;52(6):902–18.

    CAS  Google Scholar 

  21. Cheng S, Zheng B, Yao DB, Kuai SL, Tian JJ, Liang HJ, et al. Study of the binding way between saxitoxin and its aptamer and a fluorescent aptasensor for detection of saxitoxin. Spectrochim Acta Pt A. 2018;204:180–7.

    CAS  Google Scholar 

  22. Yang LB, Li P, Liu HL, Tang XH, Liu JH. A dynamic surface enhanced Raman spectroscopy method for ultra-sensitive detection: from the wet state to the dry state. Chem Soc Rev. 2015;44(10):2837–48.

    CAS  PubMed  Google Scholar 

  23. Liu HL, Yang ZL, Meng LY, Sun YD, Wang J, Yang LB, et al. Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix. J Am Chem Soc. 2014;136(14):5332–41.

    CAS  PubMed  Google Scholar 

  24. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys Sci. 1973;241(105):20–2.

    CAS  Google Scholar 

  25. Haiss W, Thanh NT, Aveyard J, Fernig DG. Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem. 2007;79(11):4215–21.

    CAS  PubMed  Google Scholar 

  26. Tian L, Su MK, Yu FF, Xu Y, Li XY, Li L, et al. Liquid-state quantitative SERS analyzer on self-ordered metal liquid-like plasmonic arrays. Nat Commun. 2018;9:3642.

    PubMed  PubMed Central  Google Scholar 

  27. Schlenoff JB, Li M, Ly H. Stability and self-exchange in Alkanethiol monolayers. J Am Chem Soc. 1995;117(50):12528–36.

    CAS  Google Scholar 

  28. Ishida T, Hara M, Kojima I, Tsuneda S, Nishida N, Sasabe H, et al. High resolution X-ray photoelectron spectroscopy measurements of Octadecanethiol self-assembled monolayers on au(111). Langmuir. 1998;14(8):2092–6.

    CAS  Google Scholar 

  29. Mezour MA. Perepichka, ii, Ivasenko O, Lennox RB, Perepichka DF. Tridentate benzylthiols on au(111): control of self-assembly geometry. Nanoscale. 2015;7(11):5014–22.

    CAS  PubMed  Google Scholar 

  30. Atar N, Eren T, Demirdögen B, Yola ML. ağlayan MO. Silver, gold, and silver@gold nanoparticle-anchored l-cysteine-functionalized reduced graphene oxide as electrocatalyst for methanol oxidation. Ionics. 2015;21(8):2285–93.

    CAS  Google Scholar 

  31. Mikhlin Y, Likhatski M, Tomashevich Y, Romanchenko A, Erenburg S, Trubina S. XAS and XPS examination of the au–S nanostructures produced via the reduction of aqueous gold (III) by sulfide ions. J Electron Spectrosc Relat Phenom. 2010;177(1):24–9.

    CAS  Google Scholar 

  32. Ndokoye P, Ke J, Liu J, Zhao Q, Li X. L-cysteine-modified gold nanostars for SERS-based copper ions detection in aqueous media. Langmuir. 2014;30(44):13491–7.

    CAS  PubMed  Google Scholar 

  33. Kühnle A, Linderoth TR, Schunack M, Besenbacher F. L-cysteine adsorption structures on au(111) investigated by scanning Tunneling microscopy under ultrahigh vacuum conditions. Langmuir. 2006;22(5):2156–60.

    PubMed  Google Scholar 

  34. Beerbom MM, Gargagliano R, Schlaf R. Determination of the electronic structure of self-assembled L-cysteine/au interfaces using photoemission spectroscopy. Langmuir. 2005;21(8):3551–8.

    CAS  PubMed  Google Scholar 

  35. Yang LB, Liu HL, Ma YM, Liu JH. Solvent-induced hot spot switch on silver nanorod enhanced Raman spectroscopy. Analyst. 2012;137(7):1547–9.

    CAS  PubMed  Google Scholar 

  36. Ge MH, Li P, Cao CT, Li SF, Lin DY, Yang LB. A long-period and high-stability three-dimensional surface-enhanced Raman scattering hotspot matrix. Chem Commun. 2019;55(59):8647–50.

    CAS  Google Scholar 

  37. Alfonso A, Louzao MC, Vieytes MR, et al. Comparative study of the stability of saxitoxin and neosaxitoxin in acidic solutions and lyophilized samples. Toxicon. 1994;32(12):1593–8.

    CAS  PubMed  Google Scholar 

  38. Dasary SS, Singh AK, Senapati D, Yu H, Ray PC. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J Am Chem Soc. 2009;131(38):13806–12.

    CAS  PubMed  Google Scholar 

  39. López-Tobar E, Hernández B, Ghomi M, Sanchez-Cortes S. Stability of the Disulfide bond in Cystine adsorbed on silver and gold nanoparticles as evidenced by SERS data. J Phys Chem C. 2013;117(3):1531–7.

    Google Scholar 

  40. Panikar SS, Ramirez-Garcia G, Sidhik S, Lopez-Luke T, Rodriguez-Gonzalez C, Ciapara IH, et al. Ultrasensitive SERS substrate for label-free therapeutic-drug monitoring of paclitaxel and cyclophosphamide in blood serum. Anal Chem. 2019;91(3):2100–11.

    CAS  PubMed  Google Scholar 

  41. Pawlukojc A, Leciejewicz J, Ramirez-Cuesta AJ, Nowicka-Scheibe J. L-cysteine: neutron spectroscopy, Raman, IR and ab initio study. Spectrochim Acta Pt A. 2005;61:2474–81.

    CAS  Google Scholar 

  42. Huai QY, Gao CL, Miao JL, Yao HL, Wang ZL. Fast detection of saxitoxin using laser tweezers surface enhanced Raman spectroscopy. Anal Methods. 2013;5(23):6870–3.

    CAS  Google Scholar 

  43. Olson TY, Schwartzberg AM, Liu JL, Zhang JZ. Raman and surface-enhanced Raman detection of Domoic acid and Saxitoxin. Appl Spectrosc. 2011;65(2):159–64.

    CAS  Google Scholar 

  44. Fleger Y, Mastai Y, Rosenbluh M, Dressler DH. SERS as a probe for adsorbate orientation on silver nanoclusters. J Raman Spectrosc. 2009;40(11):1572–7.

    CAS  Google Scholar 

  45. Li P, Liu HL, Yang LB, Liu JH. The time-resolved D-SERS vibrational spectra of pesticide thiram. Talanta. 2013;117:39–44.

    CAS  PubMed  Google Scholar 

  46. Turley HK, Hu ZW, Jensen L, Camden JP. Surface-enhanced resonance hyper-Raman scattering elucidates the molecular orientation of Rhodamine 6G on silver colloids. J Phys Chem Lett. 2017;8(8):1819–23.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Major Scientific and Technological Special Project for “Significant New Drugs Development” (No.2018ZX09J18112), the National Science Foundation of China (61875206), CASHIPS Director′s Fund (YZJJ2019QN13), the Sci-tech Police Project of Anhui Province (806116381020 and 904038287034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pan Li, Hongmei Liao or Liangbao Yang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1.05 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Li, P., Liao, H. et al. Cys-functionalized AuNP substrates for improved sensing of the marine toxin STX by dynamic surface-enhanced Raman spectroscopy. Anal Bioanal Chem 412, 4609–4617 (2020). https://doi.org/10.1007/s00216-020-02710-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02710-9

Keywords

Navigation