Skip to main content
Log in

Revisiting the Hierarchical Microstructures of an Al–Zn–Mg Alloy Fabricated by Pre-deformation and Aging

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Pre-deformation before aging has been demonstrated to have a positive effect on the mechanical strength of the 7N01 alloy in our previous study, which is rather different from the general negative effects of pre-deformation on high-strength 7XXX aluminum alloys. In order to explain the strengthening mechanism relating to the positive effect, in the present study, the microstructure of the aged 7N01 alloy with different degrees of pre-deformation was investigated in detail using advanced electron microscopy techniques. Our results show that, without pre-deformation, the aged alloy is strengthened mainly by the η′ type of hardening precipitates. In contrast, with pre-deformation, the aged alloy is strengthened by the hierarchical microstructure consisting of the GP-η′ type of precipitates formed inside sub-grains, the ηp type of precipitates formed at small-angle boundaries, and the dislocation introduced by pre-deformation (residual work-hardening effect). By visualizing the distribution of the ηp precipitates through three-dimensional electron tomography, the 3D microstructures of dislocation cells are clearly revealed. Proper combinations of ηp precipitates, GP-η′ precipitates and residual dislocations in the alloy are responsible for the positive effect of pre-deformation on its mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.A. Starke, H.M.M.A. Rashed, Reference Module in Materials Science and Materials Engineering (Elsevier, Amsterdam, 2017)

    Google Scholar 

  2. J.C. Williams, E.A. Starke, Acta Mater. 51, 5775 (2003)

    Article  CAS  Google Scholar 

  3. J.T. Staley, in Properties Related to Fracture Toughness, ed. by V. Weiss, W.R. Warke (ASTM International, West Conshohocken, 1976), p. 71–103

  4. G. Sha, A. Cerezo, Acta Mater. 52, 4503 (2004)

    Article  CAS  Google Scholar 

  5. H. Löffler, I. Kovács, J. Lendvai, J. Mater. Sci. 18, 2215 (1983)

    Article  Google Scholar 

  6. J. Lendvai, Mater. Sci. Forum 217–222, 43 (1996)

    Article  Google Scholar 

  7. F.L. Jiang, H. Zhang, S.C. Weng, D.F. Fu, Trans. Nonferrous Met. Soc. China 26, 51 (2016)

    Article  CAS  Google Scholar 

  8. F. Jiang, H. Zhang, J. Su, Y. Sun, Mater. Sci. Eng. A 636, 459 (2015)

    Article  CAS  Google Scholar 

  9. F. Jiang, H.S. Zurob, G.R. Purdy, H. Zhang, Mater. Charact. 117, 47 (2016)

    Article  CAS  Google Scholar 

  10. J.Z. Liu, J.H. Chen, X.B. Yang, S. Ren, C.L. Wu, H.Y. Xu, J. Zou, Scr. Mater. 63, 1061 (2010)

    Article  CAS  Google Scholar 

  11. J.Z. Liu, J.H. Chen, D.W. Yuan, C.L. Wu, J. Zhu, Z.Y. Cheng, Mater. Charact. 99, 277 (2015)

    Article  CAS  Google Scholar 

  12. J.Z. Liu, J.H. Chen, Z.R. Liu, C.L. Wu, Mater. Charact. 99, 142 (2015)

    Article  CAS  Google Scholar 

  13. J. Buha, R.N. Lumley, A.G. Crosky, Mater. Sci. Eng. A 492, 1 (2008)

    Article  Google Scholar 

  14. S.V. Emani, J. Benedyk, P. Nash, D. Chen, J. Mater. Sci. 44, 6384 (2009)

    Article  CAS  Google Scholar 

  15. G. Sha, Y.B. Wang, X.Z. Liao, Z.C. Duan, S.P. Ringer, T.G. Langdon, Acta Mater. 57, 3123 (2009)

    Article  CAS  Google Scholar 

  16. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scr. Mater. 39, 1221 (1998)

    Article  CAS  Google Scholar 

  17. A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baró, J.A. Szpunar, T.G. Langdon, Acta Mater. 51, 753 (2003)

    Article  CAS  Google Scholar 

  18. E.D. Russo, M. Conserva, F. Gatto, H. Markus, Metall. Trans. 4, 1133 (1973)

    Article  Google Scholar 

  19. E.D. Russo, M. Conserva, M. Buratti, F. Gatto, Mater. Sci. Eng. 14, 23 (1974)

    Article  Google Scholar 

  20. M. Conserva, M. Buratti, E.D. Russo, F. Gatto, Mater. Sci. Eng. 11, 103 (1973)

    Article  CAS  Google Scholar 

  21. H.J. Rack, R.W. Krenzer, Metall. Trans. A 8, 335 (1977)

    Article  Google Scholar 

  22. P.P. Ma, C.H. Liu, C.L. Wu, L.M. Liu, J.H. Chen, Mater. Sci. Eng. A 676, 138 (2016)

    Article  CAS  Google Scholar 

  23. L.W. Quan, G. Zhao, S. Gao, B.C. Muddle, Trans. Nonferrous Met. Soc. China 21, 1957 (2011)

    Article  CAS  Google Scholar 

  24. H.Z. Li, R.M. Liu, X.P. Liang, M. Deng, H.J. Liao, L. Huang, Trans. Nonferrous Met. Soc. China 26, 1482 (2016)

    Article  CAS  Google Scholar 

  25. M. Gazizov, R. Kaibyshev, Mater. Sci. Eng. A 625, 119 (2015)

    Article  CAS  Google Scholar 

  26. S.H. Wang, C.H. Liu, J.H. Chen, X.L. Li, D.H. Zhu, G.H. Tao, Mater. Sci. Eng. A 585, 233 (2013)

    Article  CAS  Google Scholar 

  27. Y.X. Lai, W. Fan, M.J. Yin, C.L. Wu, J.H. Chen, J. Mater. Sci. Technol. 41, 127 (2020)

    Article  Google Scholar 

  28. G. Waterloo, V. Hansen, J. Gjønnes, S.R. Skjervold, Mater. Sci. Eng. A 303, 226 (2001)

    Article  Google Scholar 

  29. A. Deschamps, Y. Brechet, Acta Mater. 47, 293 (1998)

    Article  Google Scholar 

  30. A. Deschamps, F. Livet, Y. Bréchet, Acta Mater. 47, 281 (1998)

    Article  Google Scholar 

  31. D. Wang, Z.Y. Ma, J. Alloys Compd. 469, 445 (2009)

    Article  CAS  Google Scholar 

  32. A.L. Ning, Z.Y. Liu, S.M. Zeng, Trans. Nonferrous Met. Soc. China 16, 1341 (2006)

    Article  CAS  Google Scholar 

  33. H. Li, P. Chen, Z. Wang, F. Zhu, R. Song, Z. Zheng, Mater. Sci. Eng. A 742, 798 (2019)

    Article  CAS  Google Scholar 

  34. J.H. Chen, T.T. Zhao, X.W. Yu, X.B. Yang, Z. Gao, C.L. Wu, D. Rao, J. Hunan Univ. Nat. Sci. 44, 12 (2017)

    Google Scholar 

  35. J.S. Barnard, J. Sharp, J.R. Tong, P.A. Midgley, Science 313, 319 (2006)

    Article  CAS  Google Scholar 

  36. G.S. Liu, I.M. Robertson, J. Mater. Res. 26, 514 (2011)

    Article  CAS  Google Scholar 

  37. W. Ludwig, P. Cloetens, J. Hartwig, J. Baruchel, B. Hamelin, P. Bastie, J. Appl. Crystallogr. 34, 602 (2001)

    Article  CAS  Google Scholar 

  38. M. Tanaka, K. Higashida, K. Kaneko, S. Hata, M. Mitsuhara, Scr. Mater. 59, 901 (2008)

    Article  CAS  Google Scholar 

  39. K. Ma, T. Hu, H. Yang, T. Topping, A. Yousefiani, E.J. Lavernia, J.M. Schoenung, Acta Mater. 103, 153 (2016)

    Article  CAS  Google Scholar 

  40. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater. 62, 141 (2014)

    Article  CAS  Google Scholar 

  41. P.V. Liddicoat, X.Z. Liao, Y. Zhao, Y. Zhu, M.Y. Murashkin, E.J. Lavernia, R.Z. Valiev, S.P. Ringer, Nat. Commun. 1, 63 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51831004, 11427806, 51671082, 51471067, 11904093) and the National Key Research and Development Program of China (No. 2016YFB0300801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Quan Ming.

Additional information

Available online at https://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, XW., Chen, JH., Ming, WQ. et al. Revisiting the Hierarchical Microstructures of an Al–Zn–Mg Alloy Fabricated by Pre-deformation and Aging. Acta Metall. Sin. (Engl. Lett.) 33, 1518–1526 (2020). https://doi.org/10.1007/s40195-020-01082-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01082-4

Keywords

Navigation