Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 31, 2019

Ceramic-based photocatalytic membrane reactors for water treatment – where to next?

  • Inna Horovitz , Vitaly Gitis , Dror Avisar and Hadas Mamane EMAIL logo

Abstract

Ceramic-based photocatalytic membrane reactors (cPMRs) are becoming increasingly popular among researchers and will soon be seen on the water/wastewater-treatment market. This review provides a thorough analysis of the available data on cPMRs fabricated to date based on coating method, support and coating materials, membrane design, pore size and model compounds used to evaluate process efficiency and light source. While all of the studies describe cPMR preparation in great detail, over half do not provide any information about their performance. The rest used various dyes that can be conveniently detected by spectrophotometry/fluorimetry, or micropollutants that require analytical equipment available only in specialized laboratories. In addition, cPMRs are viewed as a convenient way of incorporating a photocatalyst on an inert surface assuming that the surface itself, i.e. the membrane, does not participate in the treatment process. A unified test for cPMR performance should be developed and implemented for all cPMRs that have the potential for commercialization. There is a need for standardization in cPMR testing; only then can the true performance of cPMRs be evaluated and compared. Such testing will also answer the question of whether the cPMR membrane is indeed an inert support or an active part of the treatment process.

References

Abdel-Maksoud Y, Imam E, Ramadan A. TiO2 solar photocatalytic reactor systems: selection of reactor design for scale-up and commercialization – analytical review. Catalysts 2016; 6: 138.10.3390/catal6090138Search in Google Scholar

Ahmad R, Kim JK, Kim JH, Kim J. Well-organized, mesoporous nanocrystalline TiO2 on alumina membranes with hierarchical architecture: antifouling and photocatalytic activities. Catal Today 2017; 282: 2–12.10.1016/j.cattod.2016.03.051Search in Google Scholar

Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P. Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nanoletters 2007; 7: 1286–1289.10.1021/nl070264kSearch in Google Scholar PubMed

Alpert SM, Knappe DRU, Ducoste JJ. Modeling the UV/hydrogen peroxide advanced oxidation process using computational fluid dynamics. Water Res 2010; 44: 1797–1808.10.1016/j.watres.2009.12.003Search in Google Scholar PubMed

Asraf-Snir M, Gitis V. Tracer studies with fluorescent-dyed microorganisms-A new method for determination of residence time in chlorination reactors. Chem Eng J 2011; 166: 579–585.10.1016/j.cej.2010.11.027Search in Google Scholar

Athanasekou CP, Romanos GE, Katsaros FK, Kordatos K, Likodimos V, Falaras P. Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes. J Membr Sci 2012; 392–393: 192–203.10.1016/j.memsci.2011.12.028Search in Google Scholar

Athanasekou CP, Morales-Torres S, Likodimos V, Romanos GE, Pastrana-Martinez LM, Falaras P, Dionysiou DD, Faria JL, Figueiredo JL, Silva AMT. Prototype composite membranes of partially reduced graphene oxide/TiO2 for photocatalytic ultrafiltration water treatment under visible light. Appl Catal B Environ 2014; 158–159: 361–372.10.1016/j.apcatb.2014.04.012Search in Google Scholar

Athanasekou CP, Moustakas NG, Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL, Silva AMT, Dona-Rodriguez JM, Romanos GE, Flaras P. Ceramic photocatalytic membranes for water filtration under UV and visible light. Appl Catal B Environ 2015; 178: 12–19.10.1016/j.apcatb.2014.11.021Search in Google Scholar

Augugliaro V, García-López E, Loddo V, Malato-Rodríguez S, Maldonado I, Marcì G, Molinari R, Palmisano L. Degradation of lincomycin in aqueous medium: coupling of solar photocatalysis and membrane separation. Sol Energy 2005; 79: 402–408.10.1016/j.solener.2005.02.020Search in Google Scholar

Bagheri M, Mohseni M. A study of enhanced performance of VUV/UV process for the degradation of micropollutants from contaminated water. J Hazard Mater 2015; 294: 1–8.10.1016/j.jhazmat.2015.03.036Search in Google Scholar PubMed

Bhatkhande DS, Pangarkar VG, Beenackers AACM. Photocatalytic degradation for environmental applications – a review. J Chem Technol Biotechnol 2002; 77: 102–116.10.1002/jctb.532Search in Google Scholar

Bosc F, Ayral A, Guizard C. Mesoporous anatase coatings for coupling membrane separation and photocatalyzed reactions. J Membr Sci 2005; 265: 13–19.10.1016/j.memsci.2005.04.039Search in Google Scholar

Brosillon S, Lhomme L, Wolbert D. Modelling of a falling thin film deposited photocatalytic step reactor for water purification: pesticide treatment. Chem Eng J 2011; 169: 216–225.10.1016/j.cej.2011.03.016Search in Google Scholar

Burggraaf AJ, Cot L, editors. Fundamentals of inorganic membrane science and technology, 1st ed, the Netherlands: Elsevier, 1996.10.1016/S0927-5193(96)80001-5Search in Google Scholar

Cao X, Jing W, Xing W, Fan Y, Kong Y, Dong J. Fabrication of a visible-light response mesoporous TiO2 membrane with superior water permeability via a weak alkaline sol-gel process. Chem Commun 2011; 47: 3457–3459.10.1039/c0cc04808aSearch in Google Scholar PubMed

Cao XP, Li D, Jing WH, Xing WH, Fan YQ. Synthesis of visible-light responsive C, N and Ce co-doped TiO2 mesoporous membranes via weak alkaline sol-gel process. J Mater Chem 2012; 22: 15309–15315.10.1039/c2jm31576aSearch in Google Scholar

Carp O, Huisman CL, Reller A. Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 2004; 32: 33–177.10.1016/j.progsolidstchem.2004.08.001Search in Google Scholar

Chin SS, Chiang K, Fane AG. The stability of polymeric membranes in a TiO2 photocatalysis process. J Membr Sci 2006; 275: 202–211.10.1016/j.memsci.2005.09.033Search in Google Scholar

Choi H, Sofranko AC, Dionysiou DD. Nanocrystalline TiO2 Photocatalytic membranes with a hierarchical mesoporous multilayer structure: synthesis, characterization, and multifunction. Adv Funct Mater 2006a; 16: 1067–1074.10.1002/adfm.200500658Search in Google Scholar

Choi H, Stathatos E, Dionysiou DD. Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Appl Catal B Environ 2006b; 63: 60–67.10.1016/j.apcatb.2005.09.012Search in Google Scholar

Choi H, Stathatos E, Dionysiou DD. Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems. Desalination 2007; 202: 199–206.10.1016/j.desal.2005.12.055Search in Google Scholar

Cui Z, Xing W, Fan Y, Xu N. Pilot study on the ceramic membrane pre-treatment for seawater desalination with reverse osmosis in Tianjin Bohai Bay. Desalination 2011; 279: 190–194.10.1016/j.desal.2011.06.008Search in Google Scholar

Dijkstra MFJ, Buwalda H, de Jong AWF, Michorius A, Winkelman JGM, Beenackers AACM. Experimental comparison of three reactor designs for photocatalytic water purification. Chem Eng Sci 2001; 56: 547–555.10.1016/S0009-2509(00)00259-1Search in Google Scholar

Dionysiou DD, Suidan MT, Baudin I, Laîné J-M. Oxidation of organic contaminants in a rotating disk photocatalytic reactor: reaction kinetics in the liquid phase and the role of mass transfer based on the dimensionless Damköhler number. Appl Catal B Environ 2002; 38: 1–16.10.1016/S0926-3373(02)00012-7Search in Google Scholar

Djafer L, Ayral A, Ouagued A. Robust synthesis and performance of a titania-based ultrafiltration membrane with photocatalytic properties. Sep Purif Technol 2010; 75: 198–203.10.1016/j.seppur.2010.08.001Search in Google Scholar

Ducoste JJ, Alpert SM. Computational fluid dynamics modeling alternatives for UV-initiated advanced oxidation processes. Water Qual Res J Canada 2015; 50: 4–20.10.2166/wqrjc.2014.035Search in Google Scholar

Duek A, Arkhangelsky E, Krush R, Brenner A, Gitis V. New and conventional pore size tests in virus-removing membranes. Water Res 2012; 46: 2505–2514.10.1016/j.watres.2011.12.058Search in Google Scholar

Feitz AJ, Boyden BH, Waite TD. Evaluation of two solar pilot scale fixed-bed photocatalytic reactors. Water Res 2000; 34: 3927–3932.10.1016/S0043-1354(00)00153-6Search in Google Scholar

Fernández RL, McDonald JA, Khan SJ, Le-Clech P. Removal of pharmaceuticals and endocrine disrupting chemicals by a submerged membrane photocatalysis reactor (MPR). Sep Purif Technol 2014; 127: 131–139.10.1016/j.seppur.2014.02.031Search in Google Scholar

Foster HA, Ditta IB, Varghese S, Steele A. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 2011; 90: 1847–1868.10.1007/s00253-011-3213-7Search in Google Scholar PubMed PubMed Central

Gao Y, Hu M, Mi B. Membrane surface modification with TiO2-graphene oxide for enhanced photocatalytic performance. J Membr Sci 2014; 455: 349–356.10.1016/j.memsci.2014.01.011Search in Google Scholar

Gitis V, Rothenberg G. Membrane integrity monitoring. In: Hoek EMV, Tarabara V, editors. Encyclopedia of membrane science and technology. Hoboken, NJ: John Wiley & Sons Inc., 2013: 1–19.Search in Google Scholar

Gitis V, Rothenberg G, Ceramic membranes: new opportunities and practical applications, Weinheim, Germany: Wiley-VCH, 2016.10.1002/9783527696550Search in Google Scholar

Goei R, Lim T-T. Asymmetric TiO2 hybrid photocatalytic ceramic membrane with porosity gradient: effect of structure directing agent on the resulting membranes architecture and performances. Ceram Int 2014a; 40: 6747–6757.10.1016/j.ceramint.2013.11.137Search in Google Scholar

Goei R, Lim TT. Ag-decorated TiO2 photocatalytic membrane with hierarchical architecture: photocatalytic and anti-bacterial activities. Water Res 2014b; 59: 207–218.10.1016/j.watres.2014.04.025Search in Google Scholar PubMed

Goei R, Dong Z, Lim T-T. High-permeability pluronic-based TiO2 hybrid photocatalytic membrane with hierarchical porosity: fabrication, characterizations and performances. Chem Eng J 2013; 228: 1030–1039.10.1016/j.cej.2013.05.068Search in Google Scholar

Grilli R, Di Camillo D, Lozzi L, Horovitz I, Mamane H, Avisar D, Baker MA. Surface characterisation and photocatalytic performance of N-doped TiO2 thin films deposited onto 200 nm pore size alumina membranes by sol-gel methods. Mater Chem Phys 2015; 159: 25–37.10.1016/j.matchemphys.2015.03.044Search in Google Scholar

Guo M, Diao P, Ren YJ, Meng F, Tian H, Cai SM. Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes. Sol Energy Mater Sol Cells 2005; 88: 23–35.10.1016/j.solmat.2004.10.003Search in Google Scholar

Guo B, Pasco EL, Xagoraraki I, Tarabara VV. Virus removal and inactivation in a hybrid microfiltration-UV process with a photocatalytic membrane. Sep Purif Technol 2015; 149: 245–254.10.1016/j.seppur.2015.05.039Search in Google Scholar

Herrmann J-M. Photocatalysis fundamentals revisited to avoid several misconceptions. Appl Catal B Environ 2010; 99: 461–468.10.1016/j.apcatb.2010.05.012Search in Google Scholar

Hög A, Ludwig J, Beery M. The use of integrated flotation and ceramic membrane filtration for surface water treatment with high loads of suspended and dissolved organic matter. J Water Process Eng 2015; 6: 129–135.10.1016/j.jwpe.2015.03.010Search in Google Scholar

Horovitz I, Avisar D, Baker MA, Grilli R, Lozzi L, Di Camillo D, Mamane H. Carbamazepine degradation using a N-doped TiO2 coated photocatalytic membrane reactor: influence of physical parameters. J Hazard Mater 2016; 310: 98–107.10.1016/j.jhazmat.2016.02.008Search in Google Scholar PubMed

Horovitz I, Avisar D, Luster E, Lozzi L, Luxbacher T, Mamane H. MS2 bacteriophage inactivation using a N-doped TiO2-coated photocatalytic membrane reactor: influence of water-quality parameters. Chem Eng J 2018. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1385894718315572.10.1016/j.cej.2018.08.083Search in Google Scholar

Hu A, Zhang X, Oakes KD, Peng P, Zhou YN, Servos MR. Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals. J Hazard Mater 2011; 189: 278–285.10.1016/j.jhazmat.2011.02.033Search in Google Scholar PubMed

Huertas RM, Fraga MC, Crespo JG, Pereira VJ. Sol-gel membrane modification for enhanced photocatalytic activity. Sep Purif Technol 2017; 180: 69–81.10.1016/j.seppur.2017.02.047Search in Google Scholar

Kathiravan A, Chandramohan M, Renganathan R, Sekar S. Cyanobacterial chlorophyll as a sensitizer for colloidal TiO2. Spectrochim Acta A Mol Biomol Spectrosc 2009; 71: 1783–1787.10.1016/j.saa.2008.06.031Search in Google Scholar PubMed

Ke X, Ribbens S, Fan Y, Liu H, Cool P, Yang D, Zhu H. Integrating efficient filtration and visible-light photocatalysis by loading Ag-doped zeolite Y particles on filtration membrane of alumina nanofibers. J Membr Sci 2011; 375: 69–74.10.1016/j.memsci.2011.02.024Search in Google Scholar

Keen OS, McKay G, Mezyk SP, Linden KG, Rosario-Ortiz FL. Identifying the factors that influence the reactivity of effluent organic matter with hydroxyl radicals. Water Res 2014; 50: 408–419.10.1016/j.watres.2013.10.049Search in Google Scholar PubMed

Kwon S, Fan M, Cooper AT, Yang H. Photocatalytic applications of micro- and nano-TiO2 in environmental engineering. Crit Rev Environ Sci Technol 2008; 38: 197–226.10.1080/10643380701628933Search in Google Scholar

Lee SY, Park SJ. TiO2 photocatalyst for water treatment applications. J Ind Eng Chem 2013; 19: 1761–1769.10.1016/j.jiec.2013.07.012Search in Google Scholar

Lee S-A, Choo K-H, Lee C-H, Lee H-I, Hyeon T, Choi W, Kwon H-H. Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment. Ind Eng Chem Res 2001; 40: 1712–1719.10.1021/ie000738pSearch in Google Scholar

Leong S, Razmjou A, Wang K, Hapgood K, Zhang X, Wang H. TiO2 based photocatalytic membranes: a review. J Membr Sci 2014; 472: 167–184.10.1016/j.memsci.2014.08.016Search in Google Scholar

Liga MV, Maguire-Boyle SJ, Jafry HR, Barron AR, Li Q. Silica decorated TiO2 for virus inactivation in drinking water – simple synthesis method and mechanisms of enhanced inactivation kinetics. Environ Sci Technol 2013; 47: 6463–6470.10.1021/es400196pSearch in Google Scholar PubMed

Lim T, Goei R. Combined Photocatalysis – separation processes for water treatment using hybrid photocatalytic membrane reactors. In: Dionysiou DD, Li Puma G, Ye J, Schneider J, Bahnemann D, editors. Photocatalysis: applications, Gld edition. UK: Royal Society of Chemistry, 2016: 130–156.10.1039/9781782627104-00130Search in Google Scholar

Lin Y, Cai Y, Drioli E, Fan Y. Enhancing mechanical and photocatalytic performances on TiO2/Ti composite ultrafiltration membranes via Ag doping method. Sep Purif Technol 2015; 145: 29–38.10.1016/j.seppur.2015.02.024Search in Google Scholar

Liu L, Liu Z, Bai H, Sun DD. Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane. Water Res 2012; 46: 1101–1112.10.1016/j.watres.2011.12.009Search in Google Scholar PubMed

Luster E, Avisar D, Horovitz I, Lozzi L, Baker M, Grilli R, Mamane H. N-doped TiO2-coated ceramic membrane for carbamazepine degradation in different water qualities. Nanomaterials 2017; 7: 206–224.10.3390/nano7080206Search in Google Scholar PubMed PubMed Central

Ma N, Fan X, Quan X, Zhang Y. Ag-TiO2/HAP/Al2O3 bioceramic composite membrane: fabrication, characterization and bactericidal activity. J Membr Sci 2009a; 336: 109–117.10.1016/j.memsci.2009.03.018Search in Google Scholar

Ma N, Quan X, Zhang Y, Chen S, Zhao H. Integration of separation and photocatalysis using an inorganic membrane modified with Si-doped TiO2 for water purification. J Membr Sci 2009b; 335: 58–67.10.1016/j.memsci.2009.02.040Search in Google Scholar

Ma N, Zhang Y, Quan X, Fan X, Zhao H. Performing a microfiltration integrated with photocatalysis using an Ag-TiO2/HAP/Al2O3 composite membrane for water treatment: evaluating effectiveness for humic acid removal and anti-fouling properties. Water Res 2010; 44: 6104–6114.10.1016/j.watres.2010.06.068Search in Google Scholar PubMed

Ma S, Meng J, Li J, Zhang Y, Ni L. Synthesis of catalytic polypropylene membranes enabling visible-light-driven photocatalytic degradation of dyes in water. J Membr Sci 2014; 453: 221–229.10.1016/j.memsci.2013.11.021Search in Google Scholar

Mendret J, Hatat-Fraile M, Rivallin M, Brosillon S. Hydrophilic composite membranes for simultaneous separation and photocatalytic degradation of organic pollutants. Sep Purif Technol 2013; 111: 9–19.10.1016/j.seppur.2013.03.030Search in Google Scholar

Miranda-García N, Suárez S, Maldonado MI, Malato S, Sánchez B. Regeneration approaches for TiO2 immobilized photocatalyst used in the elimination of emerging contaminants in water. Catal Today 2014; 230: 27–34.10.1016/j.cattod.2013.12.048Search in Google Scholar

Misra NN, Keener KM, Bourke P, Cullen PJ. Generation of in-package cold plasma and efficacy assessment using methylene blue. Plasma Chem Plasma Process 2015; 35: 1043–1056.10.1007/s11090-015-9638-5Search in Google Scholar

Molinari R, Grande C, Drioli E, Palmisano L, Schiavello M. Photocatalytic membrane reactors for degradation of organic pollutants in water. Catal Today 2001; 67: 273–279.10.1016/S0920-5861(01)00314-5Search in Google Scholar

Molinari R, Pirillo F, Falco M, Loddo V, Palmisano L. Photocatalytic degradation of dyes by using a membrane reactor. Chem Eng Process Process Intensif 2004; 43: 1103–1114.10.1016/j.cep.2004.01.008Search in Google Scholar

Molinari R, Pirillo F, Loddo V, Palmisano L. Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catal Today 2006; 118: 205–213.10.1016/j.cattod.2005.11.091Search in Google Scholar

Molinari R, Lavorato C, Argurio P. Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catal Today 2017; 281: 144–164.10.1016/j.cattod.2016.06.047Search in Google Scholar

Morris RE, Krikanova E, Shadman F. Photocatalytic membrane for removal of organic contaminants during ultra-purification of water. Clean Technol Environ Policy 2004; 6: 96–104.10.1007/s10098-003-0198-7Search in Google Scholar

Moustakas NG, Katsaros FK, Kontos AG, Romanos GE, Dionysiou DD, Falaras P. Visible light active TiO2 photocatalytic filtration membranes with improved permeability and low energy consumption. Catal Today 2014; 224: 56–69.10.1016/j.cattod.2013.10.063Search in Google Scholar

Mozia S. Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep Purif Technol 2010; 73: 71–91.10.1016/j.seppur.2010.03.021Search in Google Scholar

Mozia S, Morawski AW, Toyoda M, Tsumura T. Integration of photocatalysis and membrane distillation for removal of mono- and poly-azo dyes from water. Desalination 2010; 250: 666–672.10.1016/j.desal.2009.06.075Search in Google Scholar

Mozia S, Darowna D, Orecki A, Wróbel R, Wilpiszewska K, Morawski AW. Microscopic studies on TiO2 fouling of MF/UF polyethersulfone membranes in a photocatalytic membrane reactor. J Membr Sci 2014; 470: 356–368.10.1016/j.memsci.2014.07.049Search in Google Scholar

Mozia S, Darowna D, Wróbel R, Morawski AW. A study on the stability of polyethersulfone ultrafiltration membranes in a photocatalytic membrane reactor. J Membr Sci 2015; 495: 176–186.10.1016/j.memsci.2015.08.024Search in Google Scholar

Neamţu M, Siminiceanu I, Yediler A, Kettrup A. Kinetics of decolorization and mineralization of reaction azo dyes in aqueous solution by the UV/H2O2 oxidation. Dye Pigment 2002; 53: 93–99.10.1016/S0143-7208(02)00012-8Search in Google Scholar

Oun A, Tahri N, Mahouche-Chergui S, Carbonnier B, Majumdar S, Sarkar S, Sahoo GC, Amar RB. Tubular ultrafiltration ceramic membrane based on titania nanoparticles immobilized on macroporous clay-alumina support: elaboration, characterization and application to dye removal. Sep Purif Technol 2017; 188: 126–133.10.1016/j.seppur.2017.07.005Search in Google Scholar

Pan JH, Zhang X, Du AJ, Bai H, Ng J, Sun D. A hierarchically assembled mesoporous ZnO hemisphere array and hollow microspheres for photocatalytic membrane water filtration. Phys Chem Chem Phys 2012; 14: 7481–7489.10.1039/c2cp40997fSearch in Google Scholar PubMed

Pelaez M, Falaras P, Likodimos V, Kontos AG, de la Cruz AA, O’shea K, Dionysiou DD. Synthesis, structural characterization and evaluation of sol-gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR. Appl Catal B Environ 2010; 99: 378–387.10.1016/j.apcatb.2010.06.017Search in Google Scholar

Qiu M, Chen X, Fan Y, Xing W. Ceramic membranes. In: Fontananova E, editor. Comprehensive membrane science and engineering. UK: Elsevier B.V., 2017: 270–297.10.1016/B978-0-12-409547-2.12243-7Search in Google Scholar

Rincón AG, Pulgarin C. Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time. Appl Catal B Environ 2004; 49: 99–112.10.1016/j.apcatb.2003.11.013Search in Google Scholar

Romanos GE, Athanasekou CP, Katsaros FK, Kanellopoulos NK, Dionysiou DD, Likodimos V, Falaras P. Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification. J Hazard Mater 2012; 211–212: 304–316.10.1016/j.jhazmat.2011.09.081Search in Google Scholar PubMed

Romanos GE, Athanasekou CP, Likodimos V, Aloupogiannis P, Falaras P. Hybrid ultrafiltration/photocatalytic membranes for efficient water treatment. Ind Eng Chem Res 2013; 52: 13938–13947.10.1021/ie303475bSearch in Google Scholar

Shabat-Hadas E, Mamane H, Gitis V. Rhodamine B in dissolved and nano-bound forms: indicators for light-based advanced oxidation processes. Chemosphere 2017; 184: 1020–1027.10.1016/j.chemosphere.2017.06.076Search in Google Scholar PubMed

Song H, Shao J, He Y, Liu B, Zhong X. Natural organic matter removal and flux decline with PEG-TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis. J Membr Sci 2012; 405–406: 48–56.10.1016/j.memsci.2012.02.063Search in Google Scholar

Starr BJ, Tarabara VV, Herrera-Robledo M, Zhou M, Roualdes S, Ayral A. Coating porous membranes with a photocatalyst: comparison of LbL self-assembly and plasma-enhanced CVD techniques. J Membr Sci 2016; 514: 340–349.10.1016/j.memsci.2016.04.050Search in Google Scholar

US EPA. Ultraviolet disinfection guidance manual for the final long term 2 enhanced surface water treatment rule. USA: United States Environmental Protection Agency, Office of Water, 2006.Search in Google Scholar

Van Gerven T, Mul G, Moulijn J, Stankiewicz A. A review of intensification of photocatalytic processes. Chem Eng Process Process Intensif 2007; 46: 781–789.10.1016/j.cep.2007.05.012Search in Google Scholar

Wang YH, Liu XQ, Meng GY. Preparation of asymmetric pure titania ceramic membranes with dual functions. Mater Sci Eng A 2007; 445–446: 611–619.10.1016/j.msea.2006.09.107Search in Google Scholar

Wang W-Y, Irawan A, Ku Y. Photocatalytic degradation of Acid Red 4 using a titanium dioxide membrane supported on a porous ceramic tube. Water Res 2008; 42: 4725–4732.10.1016/j.watres.2008.08.021Search in Google Scholar PubMed

Wang X, Shi F, Huang W, Fan C. Synthesis of high quality TiO2 membranes on alumina supports and their photocatalytic activity. Thin Solid Films 2012; 520: 2488–2492.10.1016/j.tsf.2011.10.023Search in Google Scholar

Zhang H, Quan X, Chen S, Zhao H, Zhao Y. Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water. Sep Purif Technol 2006; 50: 147–155.10.1016/j.seppur.2005.11.018Search in Google Scholar

Zhang X, Du AJ, Lee P, Sun DD, Leckie JO. Grafted multifunctional titanium dioxide nanotube membrane: separation and photodegradation of aquatic pollutant. Appl Catal B Environ 2008a; 84: 262–267.10.1016/j.apcatb.2008.04.009Search in Google Scholar

Zhang X, Du AJ, Lee P, Sun DD, Leckie JO. TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water. J Membr Sci 2008b; 313: 44–51.10.1016/j.memsci.2007.12.045Search in Google Scholar

Zhang X, Wang DK, Diniz da Costa JC. Recent progresses on fabrication of photocatalytic membranes for water treatment. Catal Today 2014a; 230: 47–54.10.1016/j.cattod.2013.11.019Search in Google Scholar

Zhang X, Wang DK, Lopez DRS, Diniz da Costa JC. Fabrication of nanostructured TiO2 hollow fiber photocatalytic membrane and application for wastewater treatment. Chem Eng J 2014b; 236: 314–322.10.1016/j.cej.2013.09.059Search in Google Scholar

Zhang Q, Wang H, Fan X, Lv F, Chen S, Quan X. Fabrication of TiO2 nanofiber membranes by a simple dip-coating technique for water treatment. Surf Coatings Technol. 2016; 298: 45–52.10.1016/j.surfcoat.2016.04.054Search in Google Scholar

Zhang S, Du Y, Jiang H, Liu Y, Chen R. Controlled synthesis of TiO2 nanorod arrays immobilized on ceramic membranes with enhanced photocatalytic performance. Ceram Int 2017; 43: 7261–7270.10.1016/j.ceramint.2017.03.019Search in Google Scholar

Zheng X, Shen Z-P, Shi L, Cheng R, Yuan D-H. Photocatalytic membrane reactors (PMRs) in water treatment: configurations and influencing factors. Catalysts 2017; 7: 224–254.10.3390/catal7080224Search in Google Scholar

Zhou M, Roualdès S, Ayral A. New photocatalytic contactors obtained by PECVD deposition of TiO2 thin layers on the surface of macroporous supports: PECVD TiO2-based membranes as photocatalytic contactors. Eur Phys J Spec Top 2015; 224: 1871–1882.10.1140/epjst/e2015-02506-8Search in Google Scholar

Received: 2018-06-09
Accepted: 2018-10-08
Published Online: 2019-01-31
Published in Print: 2020-07-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2018-0036/html
Scroll to top button