Synthesis 2020; 52(17): 2450-2468
DOI: 10.1055/s-0040-1707814
short review
© Georg Thieme Verlag Stuttgart · New York

Organocatalytic Asymmetric Methodologies towards the Synthesis of Atropisomeric N-Heterocycles

Vasco Corti
,
Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark   Email: vasco@chem.au.dk   Email: gibe@chem.au.dk
› Author Affiliations
Further Information

Publication History

Received: 17 February 2020

Accepted after revision: 28 April 2020

Publication Date:
15 June 2020 (online)


Abstract

A perspective on the literature dealing with the organocatalytic asymmetric preparation of axially chiral N-heterocycles is provided. A particular focus is devoted to rationalize the synthetic strategies employed in each case. Moreover, specific classes of organocatalysts are shown to stand out as privileged motives for the stereoselective preparation of such synthetically challenging molecular architectures. Finally, an overview of the main trends in the field is given.

1 Introduction

2 Five-Membered Rings

2.1 Arylation

2.2 Dynamic Kinetic Resolution

2.3 Ring Construction

2.4 Central-to-Axial Chirality Conversion and Chirality Transfer

2.5 Desymmetrization

3 Six-Membered Rings

3.1 Desymmetrization

3.2 (Dynamic) Kinetic Resolution

3.3 Ring Construction

3.4 Central-to-Axial Chirality Conversion

4 Conclusion

 
  • References


    • For recent reviews see:
    • 1a Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
    • 1b Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
    • 1c Wenchel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
    • 2a Smyth JE, Butler NM, Keller PA. Nat. Prod. Rep. 2015; 32: 1562
    • 2b LaPlante SR, Edwards PJ, Fader LD, Jakalian A, Hucke O. ChemMedChem 2011; 6: 505
    • 3a Noyori R, Takaia H. Acc. Chem. Res. 1990; 23: 345
    • 3b Kočovskŷ P, Vyskočil Ŝ, Smrčina M. Chem. Rev. 2003; 103: 3213
    • 3c Brandes S, Niess B, Bella M, Prieto A, Overgaard J, Jørgensen KA. Chem. Eur. J. 2006; 12: 6039
    • 3d Kano T, Yamaguchi Y, Maruoka K. Chem. Eur. J. 2009; 15: 6678
    • 3e Schenker S, Zamufir A, Freund M, Tsogoeva SB. Eur. J. Org. Chem. 2011; 2209
    • 3f Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
  • 4 Monovic LG, Huérou YL, Rönn M, Molander GA. J. Am. Chem. Soc. 2000; 122: 52
  • 5 Edwards JD. Jr. J. Am. Chem. Soc. 1958; 80: 3798
    • 6a Shirakawa S, Liu K, Maruoka K. J. Am. Chem. Soc. 2012; 134: 916
    • 6b Di Iorio N, Righi P, Mazzanti A, Mancinelli M, Ciogli A, Bencivenni G. J. Am. Chem. Soc. 2014; 136: 10250
    • 6c Kumarasamy E, Raghunathan R, Sibi MP, Sivaguru J. Chem. Rev. 2015; 115: 11239
    • 6d Jia S, Chen Z, Zhang N, Tan Y, Liu Y, Deng J, Yan H. J. Am. Chem. Soc. 2018; 140: 7056
    • 6e Vaidya SD, Toenjes ST, Yamamoto N, Maddox SM, Gustafson JL. J. Am. Chem. Soc. 2020; 142: 2198
    • 7a Link A, Sparr C. Chem. Soc. Rev. 2018; 47: 3804
    • 7b Zilate B, Castrogiovanni A, Sparr C. ACS Catal. 2018; 8: 2981
    • 7c Liao G, Zhou T, Yao Q.-J, Shi B.-F. Chem. Commun. 2019; 55: 8514

      For selected examples see:
    • 8a Link A, Sparr C. Angew. Chem. Int. Ed. 2014; 53: 5458
    • 8b Chen Y.-H, Cheng D.-J, Zhang J, Wang Y, Liu X.-Y, Tan B. J. Am. Chem. Soc. 2015; 137: 15062
    • 8c Bencivenni G. Synlett 2015; 26: 1915
    • 8d Joliffe JD, Armstrong RJ, Smith MD. Nat. Chem. 2017; 9: 558
    • 8e Jones BA, Balan T, Jolliffe JD, Campbell CD, Smith MD. Angew. Chem. Int. Ed. 2019; 58: 4596
    • 8f Yang G, Guo D, Meng D, Wang J. Nat. Commun. 2019; 10: 3062
    • 8g For additional examples see refs 23, 27, 30, 36, 39, and 43.
  • 9 Li Y.-M, Kwong F.-Y, Yu V.-Y, Chan AS. C. Coord. Chem. Rev. 2007; 251: 2119
  • 10 Bhat V, Wang S, Stoltz BM, Virgil SC. J. Am. Chem. Soc. 2013; 135: 16829
  • 11 Cheng C, Pan L, Chen Y, Song H, Qin Y, Li R. J. Comb. Chem. 2010; 12: 541
  • 12 Donohoe TJ, Jones CR, Barnosa LC. A. J. Am. Chem. Soc. 2011; 133: 16418
    • 13a Bonne D, Rodriguez J. Chem. Commun. 2017; 53: 12385
    • 13b Bonne D, Rodriguez J. Eur. J. Org. Chem. 2018; 2417
  • 14 Zhang H.-H, Wang C.-S, Li C, Mei G.-J, Li Y, Shi F. Angew. Chem. Int. Ed. 2017; 56: 116
  • 15 Zhang L, Zhang J, Ma J, Cheng D.-J, Tan B. J. Am. Chem. Soc. 2017; 139: 1714
  • 16 Armstrong RJ, Smith M. Angew. Chem. Int. Ed. 2014; 53: 12822

    • For recent non-catalyzed or metal-catalyzed selected examples see:
    • 17a Li JT.-R, Zhang M.-M, Wang B.-C, Lu L.-Q, Xiao W.-J. Org. Lett. 2018; 20: 3237
    • 17b Zheng S.-C, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2019; 58: 1494
    • 17c Zhang S, Yao Q.-J, Liao G, Li X, Li H, Chen H.-M, Hong X, Shi B.-F. ACS Catal. 2019; 9: 1956
    • 17d He X.-L, Zhao H.-R, Song X, Jiang B, Du W, Chen Y.-C. ACS Catal. 2019; 9: 4374
    • 17e Bai X, Wang L, Zhang Z, Zhang K, Bu Z, Wu Y, Zhang W, Wang Q. Adv. Synth. Catal. 2019; 361: 4893
    • 17f Li Z, Zhang H, Yu S. Org. Lett. 2019; 21: 4754
    • 17g Li Z, Tang M, Hu C, Yu S. Org. Lett. 2019; 21: 8819
    • 17h Tian M, Bai D, Zheng G, Chang J, Li X. J. Am. Chem. Soc. 2019; 141: 9527
    • 17i Shen D, Xu Y, Shi S.-L. J. Am. Chem. Soc. 2019; 141: 14938
    • 17j He Y.-P, Wu H, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2020; 59: 2105

      For example see:
    • 18a Austin JF, MacMillan DW. C. J. Am. Chem. Soc. 2002; 124: 1172
    • 18b Kötzner L, Webber MJ, Martìnez A, De Fusco C, List B. Angew. Chem. Int. Ed. 2014; 53: 5202
    • 18c Kaur J, Islam N, Kumar A, Bhardwaj VK, Chimni SS. Tetrahedron 2016; 72: 8042
    • 18d Bertuzzi G, Thøgersen MK, Giardinetti M, Vidal-Albalat A, Simon A, Houk KN. J. Am. Chem. Soc. 2019; 141: 3288
    • 18e Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425

      For selected contributions from the same group (not reported in this short review) see:
    • 19a Li S, Zhang J.-W, Li X.-L, Cheng D.-J, Tan B. J. Am. Chem. Soc. 2016; 138: 16561
    • 19b Wang Y.-B, Zheng S.-C, Hu Y.-M, Tan B. Nat. Commun. 2017; 8: 15489
    • 19c Wang Y.-B, Tan B. Acc. Chem. Res. 2018; 51: 534
    • 20a Qi L.-W, Mao J.-H, Zhang J, Tan B. Nat. Chem. 2018; 10: 58

    • For a related work see:
    • 20b Zhu L, Mohamed H, Yuan H, Zhang J. Catal. Sci. Technol. 2019; 16: 6752
  • 21 Yuan H, Li Y, Zhao H, Yang Z, Li X, Li W. Chem. Commun. 2019; 55: 12715
  • 22 Xia W, An Q.-J, Xiang S.-H, Li S, Wang Y.-B, Tan B. Angew. Chem. Int. Ed. 2020; 59: 6775

    • For selected examples see:
    • 23a ref 8b.
    • 23b Alemàn J, Cabrera S, Maerten E, Overgaard J, Jørgensen KA. Angew. Chem. Int. Ed. 2007; 46: 5520
    • 23c Li G, Sun W, Li J, Jia F, Hong L, Wang R. Chem. Commun. 2015; 51: 11280

      For other arylation with quinones towards the preparation of atropisomeric compounds see:
    • 24a ref 8b.
    • 24b Chen Y.-H, Qi L.-W, Fang F, Tan B. Angew. Chem. Int. Ed. 2017; 56: 1638
  • 25 Liu J.-Y, Yang X.-C, Liu Z, Luo Y.-C, Lu H, Gu Y.-C, Fang R, Xu P.-F. Org. Lett. 2019; 21: 5219
  • 26 Lu D.-L, Chen Y.-H, Xiang S.-H, Yu P, Tan B, Li S. Org. Lett. 2019; 21: 6000
  • 27 Zhu S, Chen Y.-H, Wang Y.-B, Yu P, Li S.-Y, Xiang S.-H, Wang J.-Q, Xiao J, Tan B. Nat. Commun. 2019; 10: 4268
  • 28 Ma C, Jiang F, Sheng F.-T, Jiao Y, Mei G.-J, Shi F. Angew. Chem. Int. Ed. 2019; 58: 3014
  • 29 Jiang F, Chen K.-W, Wu P, Zhang Y.-C, Jiao Y, Shi F. Angew. Chem. Int. Ed. 2019; 58: 15104

    • For other organocatalytic atroposelective DKRs see:
    • 30a Gustafson JL, Lim D, Miller SJ. Science 2010; 328: 1251
    • 30b Mori K, Itakura T, Akiyama T. Angew. Chem. Int. Ed. 2016; 55: 11642
    • 30c Yu C, Huang H, Li X, Zhang Y, Wang W. J. Am. Chem. Soc. 2016; 138: 6956
    • 30d Liu Y, Tse Y.-LS, Kwong FY, Yeung Y.-Y. ACS Catal. 2017; 7: 4435
    • 30e Maddox SM, Dawson GA, Rochester NC, Ayonon AB, Moore CE, Rheingold AL, Gustafson JL. ACS Catal. 2018; 8: 5443
    • 30f Fugard AJ, Lahdenperä AS. K, Tan JS. J, Mekareeya A, Paton RS, Smith MD. Angew. Chem. Int. Ed. 2019; 58: 2795

      For organocatalytic constructions of homobiaryls see:
    • 31a ref 8a.
    • 31b Lotter D, Neuburger M, Rickhaus M, Häussinger D, Sparr C. Angew. Chem. Int. Ed. 2016; 55: 2920
    • 31c Zhao C, Guo D, Munkerup K, Huang K.-W, Li F, Wang J. Nat. Commun. 2018; 9: 611
    • 31d Liu Y, Wu X, Li S, Xue L, Shan C, Zhao Z, Yan H. Angew. Chem. Int. Ed. 2018; 57: 6491
    • 31e Chen X, Gao D, Wang D, Xu T, Liu W, Tian P, Tong X. Angew. Chem. Int. Ed. 2019; 58: 15334
    • 31f Xu K, Li W, Zhu S, Zhu T. Angew. Chem. Int. Ed. 2019; 58: 17625
    • 32a Shibatomi K, Futatsugi K, Kobayashi F, Iwasa S, Yamamoto H. J. Am. Chem. Soc. 2010; 132: 5625
    • 32b Lv J, Zhang L, Luo S, Cheng J.-P. Angew. Chem. Int. Ed. 2013; 52: 9786
  • 33 Peng L, Li K, Xie C, Li S, Xu D, Qin W, Yan H. Angew. Chem. Int. Ed. 2019; 58: 17199
  • 34 Wang L, Zhong J, Lin X. Angew. Chem. Int. Ed. 2019; 58: 15824
  • 35 Kwon Y, Li J, Reid JP, Crawford JM, Jacob R, Sigman MS, Toste FD, Miller S. J. Am. Chem. Soc. 2019; 141: 6698
  • 36 Kwon Y, Chinn AJ, Kim B, Miller S. Angew. Chem. Int. Ed. 2018; 57: 6251

    • In addition to the examples reported in this short review see:
    • 37a Straub A, Goehrt A. Angew. Chem. Int. Ed. Engl. 1996; 35: 2662
    • 37b Hattori T, Date M, Sakurai K, Morohashi N, Kosugi H, Miyano S. Tetrahedron Lett. 2001; 42: 8035
    • 37c Nishii Y, Wakasugi K, Koga K, Tanabe Y. J. Am. Chem. Soc. 2004; 126: 5358
    • 37d Liu Y, Lu K, Dai M, Wang K, Wu W, Chen J, Quan J, Yang Z. Org. Lett. 2007; 9: 805
    • 37e Guo F, Konkol LC, Thomson RJ. J. Am. Chem. Soc. 2011; 133: 18
    • 37f Raut VS, Jean M, Vanthuyne N, Roussel C, Constantieux T, Bressy C, Bugaut X, Bonne D, Rodriguez J. J. Am. Chem. Soc. 2017; 139: 2140
    • 37g Link A, Sparr C. Angew. Chem. Int. Ed. 2018; 57: 7136
    • 37h Nguyen TT. Org. Biomol. Chem. 2019; 17: 6952
    • 37i Hayashi Y, Takikawa A, Koshino S, Ishida K. Chem. Eur. J. 2019; 25: 10319
    • 37j Koshino S, Takikawa A, Ishida K, Taniguchi T, Monde K, Kwon E, Umemiya S, Hayashi Y. Chem. Eur. J. 2020; 26: 4524
    • 37k Bao X, Rodriguez J, Bonne D. Chem. Sci. 2020; 11: 403
    • 38a Berson JA, Brown E. J. Am. Chem. Soc. 1955; 77: 450
    • 38b Meyers AI, Wettlaufer DG. J. Am. Chem. Soc. 1984; 106: 1135
  • 39 Quinonero O, Jean M, Vanthuyne N, Roussel C, Bonne D, Constantieux T, Bressy C, Bugaut X, Rodriguez J. Angew. Chem. Int. Ed. 2016; 55: 1401
    • 40a Zheng S.-C, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2019; 58: 9215
    • 40b For a related example see ref 17d.
  • 41 Hu Y.-L, Wang Z, Yang H, Chen J, Wu Z.-B, Lei Y, Zhou L. Chem. Sci. 2019; 10: 6777
  • 42 Wang Y.-B, Wu Q.-H, Zhou Z.-P, Xiang S.-H, Cui Y, Yu P, Tan B. Angew. Chem. Int. Ed. 2019; 58: 13443

    • For other organocatalytic asymmetric desymmetrizations of atropisomers see:
    • 43a ref. 8f.
    • 43b Mori K, Ichikawa Y, Kobayashi M, Shibata Y, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2013; 135: 3964
    • 43c Eudier F, Righi P, Mazzanti A, Ciogli A, Bencivenni G. Org. Lett. 2015; 17: 1728
    • 43d Zhang J.-W, Xu J.-H, Cheng D.-J, Shi C, Liu X.-Y, Tan B. Nat. Commun. 2016; 7: 10677
    • 43e Lu S, Poh SB, Rong Z.-Q, Zhao Y. Org. Lett. 2019; 21: 6169
    • 43f Di Iorio I, Crotti S, Bencivenni G. Chem. Rec. 2019; 19: 2095

      For some organocatalytic resolutions of homobiaryls see:
    • 44a Lu S, Poh SB, Zhao Y. Angew. Chem. Int. Ed. 2014; 53: 11041
    • 44b Ma G, Sibi MP. Chem. Eur. J. 2015; 21: 1644
    • 44c Cui L, Wang Y, Fan Z, Li Z, Zhou Z. Adv. Synth. Catal. 2019; 361: 3575
    • 44d Jones BA, Balan T, Jolliffe JD, Campbell CD, Smith MD. Angew. Chem. Int. Ed. 2019; 58: 4596
    • 44e Qu S, Greenhalgh MD, Smith AD. Chem. Eur. J. 2019; 25: 2816
  • 45 Zhang L, Xiang S.-H, Wang J, Xiao J, Wang J.-Q, Tan B. Nat. Commun. 2019; 10: 566

    • For transition-metal-catalyzed syntheses of axially chiral six-membered N-heterobiaryls see:
    • 46a Ros A, Estepa B, Ramírez-López P, Álvarez E, Fernández R, Lassaletta JM. J. Am. Chem. Soc. 2013; 135: 15730
    • 46b Gao D.-W, Gu Q, You S.-L. ACS Catal. 2014; 4: 2741
    • 46c Zheng J, You S.-L. Angew. Chem. Int. Ed. 2014; 54: 13244
    • 46d Zheng J, Cui W.-J, Zheng C, You S.-L. J. Am. Chem. Soc. 2016; 138: 5242
    • 46e Luo J, Zhang T, Wang L, Liao G, Yao Q.-J, Wu Y.-J, Zhan B.-B, Lan Y, Lin X.-F, Shi B.-F. Angew. Chem. Int. Ed. 2019; 58: 6708
    • 46f Wang Q, Cai Z.-J, Liu C.-X, Gu Q, You S.-L. J. Am. Chem. Soc. 2019; 141: 9504
  • 47 Cardenas MM, Toenjes ST, Nalbandian CJ, Gustafson JL. Org. Lett. 2018; 20: 2037
  • 48 Miyaji R, Asano K, Matsubara S. J. Am. Chem. Soc. 2015; 137: 6766
  • 49 Miyaji R, Asano K, Matsubara S. Chem. Eur. J. 2017; 23: 9996
    • 50a Theissmann T, Stoeckel M, Antonchick AP, Rueping M. Org. Biomol. Chem. 2011; 9: 6844
    • 50b Antonchick AP, Theissmann T, Rueping M. Angew. Chem. Int. Ed. 2006; 45: 3683
  • 51 Wang J, Chen M.-W, Ji Y, Hu S.-B, Zhou Y.-G. J. Am. Chem. Soc. 2016; 138: 10413
  • 52 Shao Y.-D, Dong M.-M, Wang Y.-A, Cheng P.-M, Wang T, Cheng D.-J. Org. Lett. 2019; 21: 4831
  • 53 Wan J, Liu H, Lan Y, Li X, Hu X, Li J, Xiao H.-P, Jiang J. Synlett 2019; 30: 2198
    • 54a Povarov LS, Mikhailov BM. Izv. Akad. Nauk SSSR, Ser. Khim. 1963; 953
    • 54b Akiyama T, Morita H, Fuchibe K. J. Am. Chem. Soc. 2006; 128: 13070
    • 54c Liu H, Dagousset G, Masson G, Retailleau P, Zhu J. J. Am. Chem. Soc. 2009; 131: 4598
    • 54d Fochi M, Caruana L, Bernardi L. Synthesis 2014; 46: 135
    • 54e Stevanović D, Bertuzzi G, Mazzanti A, Fochi M, Bernardi L. Adv. Synth. Catal. 2018; 360: 893
  • 55 Bergonzini G, Gramigna L, Mazzanti A, Fochi M, Bernardi L, Ricci A. Chem. Commun. 2010; 46: 327
  • 56 Bisag GD, Pecorari D, Mazzanti A, Bernardi L, Fochi M, Bencivenni G, Bertuzzi G, Corti V. Chem. Eur. J. 2019; 25: 15694
    • 57a Booth H, Little JH. J. Chem. Soc., Perkin Trans. 2 1972; 1846
    • 57b McKenna J. Tetrahedron 1974; 30: 1555
    • 57c White BH, Snapper ML. J. Am. Chem. Soc. 2003; 125: 14901