Skip to main content
Log in

Schur rigidity of Schubert varieties in rational homogeneous manifolds of Picard number one

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Given a rational homogeneous manifold \(S=G/P\) of Picard number one and a Schubert variety \(S_0 \) of S, the pair \((S,S_0)\) is said to be homologically rigid if any subvariety of S having the same homology class as \(S_0\) must be a translate of \(S_0\) by the automorphism group of S. The pair \((S,S_0)\) is said to be Schur rigid if any subvariety of S with homology class equal to a multiple of the homology class of \( S_0 \) must be a sum of translates of \(S_0\). Earlier we completely determined homologically rigid pairs \((S,S_0)\) in case \(S_0 \) is homogeneous and answered the same question in smooth non-homogeneous cases. In this article we consider Schur rigidity, proving that \((S,S_0)\) exhibits Schur rigidity whenever \(S_0 \) is a non-linear smooth Schubert variety. Modulo a classification result of the first author’s, our proof proceeds by a reduction to homological rigidity by deforming a subvariety Z of S with homology class equal to a multiple of the homology class of \( S_0 \) into a sum of distinct translates of \( S_0\), and by observing that the arguments for the homological rigidity apply since any two translates of \(S_0\) intersect in codimension at least two. Such a degeneration is achieved by means of the \({\mathbb {C}}^*\)-action associated with the stabilizer of the Schubert variety \(T_0\) opposite to \(S_0\). By transversality of general translates, a general translate of Z intersects \(T_0\) transversely and the \({\mathbb {C}}^*\)-action associated with the stabilizer of \(T_0\) induces a degeneration of Z into a sum of translates of \(S_0\), not necessarily distinct. After investigating the Bialynicki-Birular decomposition associated with the \({\mathbb {C}}^*\)-action we prove a refined form of transversality to get a degeneration of Z into a sum of distinct translates of \(S_0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bialynicki-Birular, A.: Some theorem on actions of algebraic groups. Ann. Math. 98, 480–497 (1973)

    MathSciNet  Google Scholar 

  2. Bialynicki-Birular, A.: Some properties of the decompositions of algebraic varieties determined by actions of a torus. Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 24(9), 667–674 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Brion, M., Polo, P.: Generic singularities of certain Schubert varieties. Math. Z. 231, 301–324 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Brion, M.: Lectures on the Geometry of Flag Varieties, Topics in Cohomological Studies of Algebraic Varieties, Trends in Mathematics, pp. 33–85. Birkhäuser, Basel (2005)

    Google Scholar 

  5. Bryant, R.: Rigidity and quasi-rigidity of extremal cycles in compact Hermitian symmetric spaces. arXiv:math.DG/0006186

  6. Coskun, I., Robles, C.: Flexibility of Schubert classes. Differ. Geom. Appl. 31(6), 759–774 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Coskun, I.: Rigid and non-smoothable Schubert classes. J. Differ. Geom. 87(3), 493–514 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Coskun, I.: Rigidity of Schubert classes in orthogonal Grassmannians. Isr. J. Math. 200(1), 85–126 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Coskun, I.: Restriction Varieties and the Rigidity Problem, Schubert Varieties, Equivariant Cohomology and Characteristic Classes IMPANGA. EMS Series Congress Report, vol. 15, pp. 49–95 Eur. Math. Soc., Zürich (2018)

  10. Deodhar, V.V.: On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells. Invent. Math. 79, 499–511 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Fulton, W.: Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2. Springer, Berlin (1998)

  12. Hartshorne, R., Rees, E., Thomas, E.: Nonsmoothing of algebraic cycles on Grassmann varieties. Bull. Am. Math. Soc. 80, 847–851 (1974)

    MathSciNet  MATH  Google Scholar 

  13. Hong, J., Kwon, M.: Rigidity of smooth Schubert varieties in a rational homogeneous manifold associated to a short root. arXiv:1907.09694

  14. Hong, J., Mok, N.: Analytic continuation of holomorphic maps respecting varieties of minimal rational tangents and applications to rational homogeneous manifolds. J. Differ. Geom. 86(3), 539–567 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Hong, J., Mok, N.: Characterization of smooth Schubert varieties in rational homogeneous manifolds of Picard number 1. J. Algebraic Geom. 22(2), 333–362 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Hong, J., Park, K.-D.: Characterization of standard embeddings between rational homogeneous manifolds of Picard number 1. Int. Math. Res. Not. 2011, 2351–2373 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Hong, J.: Rigidity of singular Schubert varieties in \(Gr(m, n)\). J. Differ. Geom. 71(1), 1–22 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Hong, J.: Rigidity of smooth Schubert varieties in Hermitian symmetric spaces. Trans. Am. Math. Soc. 359, 2361–2381 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Hwang, J.-M., Mok, N.: Rigidity of irreducible Hermitian symmetric spaces of the compact type under Kahler deformation. Invent. Math. 131(2), 393–418 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Hwang, J.-M., Mok, N.: Varieties of minimal rational tangents on uniruled projective manifolds. In: Schneider, M., Siu, Y.-T. (eds.) Several Complex Variables, MSRI Publications, vol. 37, pp. 351–389. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  21. Hwang, J.-M., Mok, N.: Cartan–Fubini type extension of holomorphic maps for Fano manifolds of Picard number 1. J. Math. Pure Appl. 80, 563–575 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Hwang, J.-M., Mok, N.: Deformation rigidity of the rational homogeneous space associated to a long simple root. Ann. Scient. Éc. Norm. Sup., \(4^e\) série, t. 35, 173–184 (2002)

  23. Hwang, J.-M., Mok, N.: Deformation rigidity of the 20-dimensional \(F_4\)-homogeneous space associated to a short root. In: Popov, V.L. (ed.) Algebraic Transformation Groups and Algebraic Varieties. Encyclopedia Mathematics Science, vol. 132, pp. 37–58. Springer, Berlin (2004)

    Google Scholar 

  24. Hwang, J.-M., Mok, N.: Prolongations of infinitsimal linear automorphisms of projective varieties and rigidity of rational homogeneous spaces of Picard number 1 under Kähler deformation. Invent. Math. 160(3), 591–645 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Kempf, G.R.: On the collapsing of homogeneous bundles. Invent. Math. 37, 229–239 (1976)

    MathSciNet  MATH  Google Scholar 

  26. Kleiman, S.: The transversality of a general translate. Compos. Math. 28, 287–297 (1974)

    MathSciNet  MATH  Google Scholar 

  27. Kodaira, K.: On stability of compact submanifolds of complex manifolds. Am. J. Math. 85, 79–94 (1963)

    MathSciNet  MATH  Google Scholar 

  28. Kostant, B.: Lie algebra cohomology and generalized Schubert cells. Ann. Math. 77(1), 72–144 (1963)

    MathSciNet  MATH  Google Scholar 

  29. Landsberg, J.M., Manivel, L.: On the projective geometry of rational homogeneous varieties. Comment. Math. Helv. 78(1), 65–100 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Mathieu, O.: Formules de caractères pour les algèbres de Kac–Moody générales. Astérisque 159, 160 (1988)

    MATH  Google Scholar 

  31. Mok, N., Zhang, Y.: Rigidity of pairs of rational homogeneous spaces of Picard number 1 and analytic continuation of geometric structures on uniruled manifolds. J. Differ. Geom. 112, 263–345 (2019)

    MATH  Google Scholar 

  32. Mok, N.: Geometric structures and substructures on uniruled projective manifolds. In: Cascini, P., McKernan, J., Pereira, J.V. (eds.) Foliation Theory in Algebraic Geometry (Simons Symposia), pp. 103–148. Springer, Berlin (2016)

    Google Scholar 

  33. Pasquier, B.: On some smooth projective two-orbit varieties with Picard number one. Math. Ann. 344(4), 963–987 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Robles, C., The, D.: Rigid Schubert varieties in compact Hermitian symmetric spaces. Selecta Math. (N.S.) 18(3), 717–777 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Robles, C.: Schur flexibility of cominuscule Schubert varieties. Commun. Anal. Geom. 21(5), 979–1013 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Springer, T.A.: Linear Algebraic Groups. Progress in Mathematics, vol. 9, 2nd edn. Birkhäuser, Boston (1998)

    Google Scholar 

  37. Walters, M.: Geometry and Uniqueness of Some Extremal Subvarieties in Complex Grassmannians, Ph.D thesis, U. Michigan (1997)

Download references

Acknowledgements

We would like to thank the referee for reading the article carefully and for the very helpful comments and suggestions. The first author is supported by a KIAS Individual Grant (SP029802) via the Center for Mathematical Challenges at Korea Institute for Advanced Study. The second author is supported by the GRF grant 17335616 of the Hong Kong Research Grants Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehyun Hong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Mok, N. Schur rigidity of Schubert varieties in rational homogeneous manifolds of Picard number one. Sel. Math. New Ser. 26, 41 (2020). https://doi.org/10.1007/s00029-020-00571-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-00571-9

Keywords

Mathematics Subject Classification

Navigation