Skip to main content
Log in

Accelerated oxygen reduction on Fe/N/C catalysts derived from precisely-designed ZIF precursors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fe/N/C material is the most competitive alternative to precious-metal catalysts for oxygen reduction. In view of the present consensus on active centers, further effort is directed at maximizing the density of single Fe atoms. Here, the imperfections in commonly used doping strategy of Fe for the synthesis of zeolitic imidazolateframework (ZIF)-derived Fe/N/C catalysts are revealed. More importantly, a strikingly improved catalyst is obtained by a ‘second pyrolysis’ method and delivers a half-wave potential of 0.825 V (vs. RHE) in acidic media. The strong confinement effect of carbonaceous host accounts for the formation of dense single-atom sites and thus the high activity. Our findings will potentially facilitate future improvement of M/N/C catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steele, B. C.; Heinzel, A. Materials for fuel-cell technologies. Nature2001, 414, 345–352.

    CAS  Google Scholar 

  2. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature2012, 486, 43–51.

    CAS  Google Scholar 

  3. Tian, J.; Morozan, A.; Sougrati, M. T.; Lefevre, M.; Chenitz, R.; Dodelet, J. P.; Jones, D.; Jaouen, F. Optimized synthesis of Fe/N/C cathode catalysts for PEM fuel cells: A matter of iron-ligand coordination strength. Angew. Chem., Int. Ed.2013, 52, 6867–6870.

    CAS  Google Scholar 

  4. Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed.2016, 55, 2650–2676.

    CAS  Google Scholar 

  5. Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science2017, 357, 479–484.

    CAS  Google Scholar 

  6. Martinez, U.; Komini Babu, S.; Holby, E. F.; Chung, H. T.; Yin, X.; Zelenay, P. Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction. Adv. Mater.2019, 31, 1806545.

    Google Scholar 

  7. Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal.2019, 2, 578–589.

    CAS  Google Scholar 

  8. Chung, H. T.; Won, J. H.; Zelenay, P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun.2013, 4, 1922.

    Google Scholar 

  9. Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science2011, 332, 443–447.

    CAS  Google Scholar 

  10. Singh, K.; Razmjooei, F.; Yu, J. S. Active sites and factors influencing them for efficient oxygen reduction reaction in metal-N coordinated pyrolyzed and non-pyrolyzed catalysts: A review. J. Mater. Chem. A2017, 5, 20095–20119.

    CAS  Google Scholar 

  11. Jasinski, R. A new fuel cell cathode catalyst. Nature1964, 201, 1212–1213.

    CAS  Google Scholar 

  12. van den Brink, F.; Barendrecht, E.; Visscher, W. The cathodic reduction of oxygen: A review with emphasis on macrocyclic organic metal complexes as electrocatalysts. Recl. Trav. Chim. Pays Bas1980, 99, 253–262.

    CAS  Google Scholar 

  13. Zagal, J. H. Metallophthalocyanines as catalysts in electrochemical reactions. Coord. Chem. Rev.1992, 119, 89–136.

    CAS  Google Scholar 

  14. Vasudevan, P.; Santosh; Mann, N.; Tyagi, S. Transition metal complexes of porphyrins and phthalocyanines as electrocatalysts for dioxygen reduction. Transition Met. Chem.1990, 15, 81–90.

    CAS  Google Scholar 

  15. Li, Z. P.; Liu, B. H. The use of macrocyclic compounds as electrocatalysts in fuel cells. J. Appl. Electrochem.2010, 40, 475–483.

    CAS  Google Scholar 

  16. Bouwkamp-Wijnoltz, A. L.; Visscher, W.; van Veen, J. A. R.; Boellaard, E.; van der Kraan, A. M.; Tang, S. C. On active-site heterogeneity in pyrolyzed carbon-supported iron porphyrin catalysts for the electrochemical reduction of oxygen: An in situ Mössbauer study. J. Phys. Chem. B2002, 106, 12993–13001.

    CAS  Google Scholar 

  17. Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science2009, 324, 71–74.

    Google Scholar 

  18. Ramaswamy, N.; Tylus, U.; Jia, Q. Y.; Mukerjee, S. Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: Linking surface science to coordination chemistry. J. Am. Chem. Soc.2013, 135, 15443–15449.

    CAS  Google Scholar 

  19. Liang, W.; Chen, J. X.; Liu, Y. W.; Chen, S. L. Density-functional-theory calculation analysis of active sites for four-electron reduction of O2 on Fe/N-doped graphene. ACS Catal.2014, 4, 4170–4177.

    CAS  Google Scholar 

  20. Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater.2015, 14, 937–942.

    CAS  Google Scholar 

  21. Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed.2017, 56, 6937–6941.

    CAS  Google Scholar 

  22. Li, J. K.; Ghoshal, S.; Liang, W. T.; Sougrati, M. T.; Jaouen, F.; Halevi, B.; McKinney, S.; McCool, G.; Ma, C. R.; Yuan, X. X. et al. Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy Environ. Sci.2016, 9, 2418–2432.

    CAS  Google Scholar 

  23. Jia, Q. Y.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E. F.; Zelenay, P. et al. Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano2015, 9, 12496–12505.

    CAS  Google Scholar 

  24. Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J. W.; Lee, J. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc.2019, 141, 6254–6262.

    CAS  Google Scholar 

  25. Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal.2019, 2, 259–268.

    CAS  Google Scholar 

  26. Gewirth, A. A.; Varnell, J. A.; DiAscro, A. M. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem. Rev.2018, 118, 2313–2339.

    CAS  Google Scholar 

  27. Nie, Y.; Wei, Z. D. Electronic and physical property manipulations: Recent achievements towards heterogeneous carbon-based catalysts for oxygen reduction reaction. ChemCatChem2019, 11, 5885–5897.

    CAS  Google Scholar 

  28. Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed.2016, 55, 10800–10805.

    CAS  Google Scholar 

  29. Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc.2017, 139, 17281–17284.

    CAS  Google Scholar 

  30. Xiao, M. L.; Zhu, J. J.; Ma, L.; Jin, Z.; Ge, J. J.; Deng, X.; Hou, Y.; He, Q. G.; Li, J. K.; Jia, Q. Y. et al. Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal.2018, 8, 2824–2832.

    CAS  Google Scholar 

  31. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res.2019, 12, 2067–2080.

    CAS  Google Scholar 

  32. Wang, X. J.; Zhang, H. G.; Lin, H. H.; Gupta, S.; Wang, C.; Tao, Z. X.; Fu, H.; Wang, T.; Zheng, J.; Wu, G. et al. Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid. Nano Energy2016, 25, 110–119.

    CAS  Google Scholar 

  33. Armel, V.; Hindocha, S.; Salles, F.; Bennett, S.; Jones, D.; Jaouen, F. Structural descriptors of zeolitic-imidazolate frameworks are keys to the activity of Fe-N-C catalysts. J. Am. Chem. Soc.2017, 139, 453–464.

    CAS  Google Scholar 

  34. Ye, Y. F.; Cai, F.; Li, H. B.; Wu, H. H.; Wang, G. X.; Li, Y. S.; Miao, S.; Xie, S. H.; Si, R.; Wang, J. et al. Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction. Nano Energy2017, 38, 281–289.

    CAS  Google Scholar 

  35. Lai, Q. X.; Zheng, L. R.; Liang, Y. Y.; He, J. P.; Zhao, J. X.; Chen, J. H. Metal-organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-N sites for advanced oxygen reduction in acid media. ACS Catal.2017, 7, 1655–1663.

    CAS  Google Scholar 

  36. Jin, H. H.; Zhou, H.; He, D. P.; Wang, Z. H.; Wu, Q. L.; Liang, Q. R.; Liu, S. L.; Mu, S. C. MOF-derived 3D Fe-N-S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media. Appl. Catal. B: Environ.2019, 250, 143–149.

    CAS  Google Scholar 

  37. Chen, X. D.; Wang, N.; Shen, K.; Xie, Y. K.; Tan, Y. P.; Li, Y. W. MOF-derived isolated Fe atoms implanted in N-doped 3D hierarchical carbon as an efficient ORR electrocatalyst in both alkaline and acidic media. ACS Appl. Mater. Interfaces2019, 11, 25976–25985.

    CAS  Google Scholar 

  38. Liu, X.; Liu, H.; Chen, C.; Zou, L. L.; Li, Y.; Zhang, Q.; Yang, B.; Zou, Z. Q.; Yang, H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res.2019, 12, 1651–1657.

    CAS  Google Scholar 

  39. Li, F.; Ding, X. B.; Cao, Q. C.; Qin, Y. H.; Wang, C. W. A ZIF-derived hierarchically porous Fe-Zn-N-C catalyst synthesized via a two-stage pyrolysis for the highly efficient oxygen reduction reaction in both acidic and alkaline media. Chem. Commun.2019, 55, 13979–13982.

    CAS  Google Scholar 

  40. Qiao, M. F.; Wang, Y.; Wang, Q.; Hu, G. Z.; Mamat, X.; Zhang, S. S.; Wang, S. Y. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultra-efficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angew. Chem., Int. Ed.2020, 59, 2688–2694.

    CAS  Google Scholar 

  41. Zhang, H. G.; Chung, H. T.; Cullen, D. A.; Wagner, S.; Kramm, U. I.; More, K. L.; Zelenay, P.; Wu, G. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci.2019, 12, 2548–2558.

    CAS  Google Scholar 

  42. Deng, Y. J.; Chi, B.; Li, J.; Wang, G. H.; Zheng, L.; Shi, X. D.; Cui, Z. M.; Du, L.; Liao, S. J.; Zang, K. T. et al. Atomic Fe-doped MOF-derived carbon polyhedrons with high active-center density and ultra-high performance toward PEM fuel cells. Adv. Energy Mater.2019, 9, 1802856.

    Google Scholar 

  43. Gao, L. Q.; Xiao, M. L.; Jin, Z.; Liu, C. P.; Zhu, J. B.; Ge, J. J.; Xing, W. Correlating Fe source with Fe-N-C active site construction: Guidance for rational design of high-performance ORR catalyst. J. Energy Chem.2018, 27, 1668–1673.

    Google Scholar 

  44. Garsany, Y.; Baturina, O. A.; Swider-Lyons, K. E.; Kocha, S. S. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem.2010, 82, 6321–6328.

    CAS  Google Scholar 

  45. Zhu, J. B.; Xiao, M. L.; Liu, C. P.; Ge, J. J.; St-Pierre, J.; Xing, W. Growth mechanism and active site probing of Fe3C@N-doped carbon nanotubes/C catalysts: Guidance for building highly efficient oxygen reduction electrocatalysts. J. Mater. Chem. A2015, 3, 21451–21459.

    CAS  Google Scholar 

  46. Jaouen, F.; Lefèvre, M.; Dodelet, J. P.; Cai, M. Heat-treated Fe/N/C catalysts for O2 electroreduction: Are active sites hosted in micropores? J. Phys. Chem. B2006, 110, 5553–5558.

    CAS  Google Scholar 

  47. Westre, T. E.; Kennepohl, P.; DeWitt, J. G.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc.1997, 119, 6297–6314.

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 21633008, 21875243, and 21603216), the National Science and Technology Major Project (No. 2017YFB01029002), Jilin Province Science and Technology Development Program (Nos. 20190201270JC and 20180101030JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junjie Ge, Changpeng Liu or Wei Xing.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, E., Wang, C., Li, Y. et al. Accelerated oxygen reduction on Fe/N/C catalysts derived from precisely-designed ZIF precursors. Nano Res. 13, 2420–2426 (2020). https://doi.org/10.1007/s12274-020-2868-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2868-8

Keywords

Navigation