Skip to main content

Advertisement

Log in

Loss of Estrogen Efficacy Against Hippocampus Damage in Long-Term OVX Mice Is Related to the Reduction of Hippocampus Local Estrogen Production and Estrogen Receptor Degradation

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 25 July 2022

This article has been updated

Abstract

Postmenopausal women experience a higher risk for neurodegenerative diseases, including cognitive impairment and ischemic stroke. Many preclinical studies have indicated that estrogen replacement therapy (ERT) may provide protective effects against these neurological diseases. However, the results of Women’s Health Initiative (WHI) studies have led to the proposal of “critical period hypothesis,” which states that there is a precise window of opportunity for administering beneficial hormone therapy following menopause. However, the underlying molecular mechanisms require further characterization. Here, we explored the effects of ERT on cognition decline and global cerebral ischemia (GCI)-induced hippocampal neuronal damage in mice that had experienced both short-term (ovariectomized (OVX) 1 week) and long-term (OVX 10 weeks) estrogen deprivation. We also further explored the concentration of 17β-estradiol (E2) in the circulation and hippocampus and the expression of aromatase and estrogen receptors (ERα, ERα-Ser118, and ERβ). We found that the neuroprotective effectiveness of ERT against hippocampus damage exhibited in OVX1w mice was totally absent in OVX10w mice. Interestingly, the concentration of hippocampal E2 was irreversibly reduced in OVX10w mice, which was related to the decrease of aromatase expression in the hippocampus. In addition, long-term estrogen deprivation (LTED) led to a decrease in estrogen receptor proteins in the hippocampus. Thus, we concluded that the loss of ERT neuroprotection against hippocampus injury in LTED mice was related to the reduction in hippocampus E2 production and estrogen receptor degradation. These results provide several intervention targets to restore the effectiveness of ERT neuroprotection in elderly post-menopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Rocca WA, Bower JH, Maraganore DM, Ahlskog JE, Grossardt BR, Andrade M, Melton LJ (2007) Increased risk of cognitive impairment or dementia in women who underwent oophorectomy before menopause. Neurology 69(11):1074–1083. https://doi.org/10.1212/01.wnl.0000276984.19542.e6

    Article  CAS  PubMed  Google Scholar 

  2. Rocca WA, Grossardt BR, Shuster LT (2011) Oophorectomy, menopause, estrogen treatment, and cognitive aging: clinical evidence for a window of opportunity. Brain Res 1379:188–198. https://doi.org/10.1016/j.brainres.2010.10.031

    Article  CAS  PubMed  Google Scholar 

  3. Shuster LT, Rhodes DJ, Gostout BS, Grossardt BR, Rocca WA (2010) Premature menopause or early menopause: long-term health consequences. Maturitas 65(2):161–166. https://doi.org/10.1016/j.maturitas.2009.08.003

    Article  PubMed  Google Scholar 

  4. Koellhoffer EC, McCullough LD (2013) The effects of estrogen in ischemic stroke. Transl Stroke Res 4(4):390–401. https://doi.org/10.1007/s12975-012-0230-5

    Article  CAS  PubMed  Google Scholar 

  5. Bhavnani BR (2003) Estrogens and menopause: pharmacology of conjugated equine estrogens and their potential role in the prevention of neurodegenerative diseases such as Alzheimer's. J Steroid Biochem Mol Biol 85:473–482. https://doi.org/10.1016/s0960-0760(03)00220-6

    Article  CAS  PubMed  Google Scholar 

  6. Smith KM, Dahodwala N (2014) Sex differences in Parkinson's disease and other movement disorders. Exp Neurol 259:44–56. https://doi.org/10.1016/j.expneurol.2014.03.010

    Article  CAS  PubMed  Google Scholar 

  7. Wassertheil-Smoller S, Hendrix SL, Limacher M, Heiss G, Kooperberg C, Baird A, Kotchen T, Curb JD et al (2003) Effect of estrogen plus progestin on stroke in postmenopausal women: the women's health initiative: a randomized trial. JAMA 289(20):2673–2684. https://doi.org/10.1001/jama.289.20.2673

    Article  CAS  PubMed  Google Scholar 

  8. Rapp SR, Espeland MA, Shumaker SA, Henderson VW, Brunner RL, Manson JAE, Gass MLS, Stefanick ML et al (2003) Effect of estrogen plus progestin on global cognitive function in postmenopausal women: the women's health initiative memory study: a randomized controlled trial. JAMA 289(20):2663–2672. https://doi.org/10.1001/jama.289.20.2663

    Article  CAS  PubMed  Google Scholar 

  9. Shumaker SA, Legault C, Rapp SR, Thal L, Wallace RB, Ockene JK, Hendrix SL, Jones III BN et al (2003) Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the women's health initiative memory study: a randomized controlled trial. JAMA 289(20):2651–2662. https://doi.org/10.1001/jama.289.20.2651

    Article  CAS  PubMed  Google Scholar 

  10. Maki PM (2006) Hormone therapy and cognitive function: is there a critical period for benefit? Neuroscience 138(3):1027–1030. https://doi.org/10.1016/j.neuroscience.2006.01.001

    Article  CAS  PubMed  Google Scholar 

  11. Sherwin BB (2009) Estrogen therapy: is time of initiation critical for neuroprotection? Nat Rev Endocrinol 5(11):620–627. https://doi.org/10.1038/nrendo.2009.193

    Article  CAS  PubMed  Google Scholar 

  12. Hodis HN, Mack WJ, Henderson VW, Shoupe D, Budoff MJ, Hwang-Levine J, Li Y, Feng M et al (2016) Vascular effects of early versus late postmenopausal treatment with estradiol. N Engl J Med 374(13):1221–1231. https://doi.org/10.1056/NEJMoa1505241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. MacLennan AH, Henderson VW, Paine BJ et al (2006) Hormone therapy, timing of initiation, and cognition in women aged older than 60 years: the REMEMBER pilot study. Menopause 13(1):28–36. https://doi.org/10.1097/01.gme.0000191204.38664.61

    Article  PubMed  Google Scholar 

  14. Rodriguez-Perez AI, Borrajo A, Valenzuela R, Lanciego JL, Labandeira-Garcia JL (2015) Critical period for dopaminergic neuroprotection by hormonal replacement in menopausal rats. Neurobiol Aging 36(2):1194–1208. https://doi.org/10.1016/j.neurobiolaging.2014.10.028

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki S, Brown CM, Dela CC, Yang E, Bridwell DA, Wise PM (2007) Timing of estrogen therapy after ovariectomy dictates the efficacy of its neuroprotective and antiinflammatory actions. Proc. Natl. Acad. Sci. U.S.A. 104(14):6013–6018. https://doi.org/10.1073/pnas.0610394104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fester L, Prange-Kiel J, Jarry H, Rune GM (2011) Estrogen synthesis in the hippocampus. Cell Tissue Res 345(3):285–294. https://doi.org/10.1007/s00441-011-1221-7

    Article  CAS  PubMed  Google Scholar 

  17. Hojo Y, Hattori TA, Enami T et al (2004) Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons. Proc. Natl. Acad. Sci. U.S.A. 101(3):865–870. https://doi.org/10.1073/pnas.2630225100

    Article  CAS  PubMed  Google Scholar 

  18. Zhang QG, Wang R, Tang H, Dong Y, Chan A, Sareddy GR, Vadlamudi RK, Brann DW (2014) Brain-derived estrogen exerts anti-inflammatory and neuroprotective actions in the rat hippocampus. Mol Cell Endocrinol 389:84–91. https://doi.org/10.1016/j.mce.2013.12.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yague JG, Azcoitia I, DeFelipe J, Garcia-Segura LM, Muñoz A (2010) Aromatase expression in the normal and epileptic human hippocampus. Brain Res 1315:41–52. https://doi.org/10.1016/j.brainres.2009.09.111

    Article  CAS  PubMed  Google Scholar 

  20. Yang LC, Zhang QG, Zhou CF, Yang F, Zhang YD, Wang RM, Brann DW (2010) Extranuclear estrogen receptors mediate the neuroprotective effects of estrogen in the rat hippocampus. PLoS One 5(5):e9851. https://doi.org/10.1371/journal.pone.0009851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lannigan DA (2003) Estrogen receptor phosphorylation. Steroids 68(1):1–9. https://doi.org/10.1016/s0039-128x(02)00110-1

    Article  CAS  PubMed  Google Scholar 

  22. Lasota A, Danowska-Klonowska D (2004) Experimental osteoporosis—different methods of ovariectomy in female white rats. Rocz Akad Med Bialymst 129–131

  23. McLean AC, Valenzuela N, Fai S, Bennett S (2012) Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. J Vis Exp 67:e4389. https://doi.org/10.3791/4389

    Article  CAS  Google Scholar 

  24. Monteggia LM, Barrot M, Powell CM, Berton O, Galanis V, Gemelli T, Meuth S, Nagy A et al (2004) Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc. Natl. Acad. Sci. U.S.A. 101(29):10827–10832. https://doi.org/10.1073/pnas.0402141101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang LM, Fu FH, Zhang XM, Zhu M, Wang T, Fan H (2010) Escin attenuates cognitive deficits and hippocampal injury after transient global cerebral ischemia in mice via regulating certain inflammatory genes. Neurochem Int 57(2):119–127. https://doi.org/10.1016/j.neuint.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  26. Ma YL, Guo H, Zhang LX, Tao L, Yin AQ, Liu ZY, Li Y, Dong HL et al (2016) Estrogen replacement therapy-induced neuroprotection against brain ischemia-reperfusion injury involves the activation of astrocytes via estrogen receptor β. Sci Rep 6:21467. https://doi.org/10.1038/srep21467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Homi HM, Mixco JM, Sheng HX, Grocott HP, Pearlstein RD, Warner DS (2003) Severe hypotension is not essential for isoflurane neuroprotection against forebrain ischemia in mice. Anesthesiology 99(5):1145–1151. https://doi.org/10.1097/00000542-200311000-00022

    Article  CAS  PubMed  Google Scholar 

  28. Lu Y, Sareddy GR, Wang J, Wang R, Li Y, Dong Y, Zhang Q, Liu J et al (2019) Neuron-derived estrogen regulates synaptic plasticity and memory. J Neurosci 39(15):2792–2809. https://doi.org/10.1523/JNEUROSCI.1970-18.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bird CM (2017) The role of the hippocampus in recognition memory. Cortex 93:155–165. https://doi.org/10.1016/j.cortex.2017.05.016

    Article  PubMed  Google Scholar 

  30. Tanaka H, Grooms SY, Bennett MV, Zukin RS (2000) The AMPAR subunit GluR2: still front and center-stage. Brain Res 886:190–207. https://doi.org/10.1016/s0006-8993(00)02951-6

    Article  CAS  PubMed  Google Scholar 

  31. Bohacek J, Daniel JM (2010) The beneficial effects of estradiol on attentional processes are dependent on timing of treatment initiation following ovariectomy in middle-aged rats. Psychoneuroendocrinology 35(5):694–705. https://doi.org/10.1016/j.psyneuen.2009.10.010

    Article  CAS  PubMed  Google Scholar 

  32. McDermott CM, Liu D, Ade C, Schrader LA (2015) Estradiol replacement enhances fear memory formation, impairs extinction and reduces COMT expression levels in the hippocampus of ovariectomized female mice. Neurobiol Learn Mem 118:167–177. https://doi.org/10.1016/j.nlm.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  33. Shughrue PJ, Merchenthaler I (2003) Estrogen prevents the loss of CA1 hippocampal neurons in gerbils after ischemic injury. Neuroscience 116(3):851–861. https://doi.org/10.1016/s0306-4522(02)00790-x

    Article  CAS  PubMed  Google Scholar 

  34. Thakkar R, Wang RM, Wang J, Vadlamudi RK, Brann DW (2018) β17-estradiol regulates microglia activation and polarization in the hippocampus following global cerebral ischemia. Oxidative Med Cell Longev 2018:4248526–4248519. https://doi.org/10.1155/2018/4248526

    Article  CAS  Google Scholar 

  35. Hamilton RT, Rettberg JR, Mao ZS, To J, Zhao LQ, Appt SE, Register TC, Kaplan JR et al (2011) Hippocampal responsiveness to 17β-estradiol and equol after long-term ovariectomy: implication for a therapeutic window of opportunity. Brain Res 1379:11–22. https://doi.org/10.1016/j.brainres.2011.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Azcoitia I, Sierra A, Veiga S, Honda S, Harada N, Garcia-Segura LM (2001) Brain aromatase is neuroprotective. J Neurobiol 47(4):318–329. https://doi.org/10.1002/neu.1038

    Article  CAS  PubMed  Google Scholar 

  37. Kretz O, Fester L, Wehrenberg U, Zhou L, Brauckmann S, Zhao ST, Prange-KJ NT, Jarry H et al (2004) Hippocampal synapses depend on hippocampal estrogen synthesis. J Neurosci 24(26):5913–5921. https://doi.org/10.1523/JNEUROSCI.5186-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Prange KJ, Fester L, Zhou LP, Lauke H, Carrétero J, Rune GM (2006) Inhibition of hippocampal estrogen synthesis causes region-specific downregulation of synaptic protein expression in hippocampal neurons. Hippocampus 16(5):464–471. https://doi.org/10.1002/hipo.20173

    Article  CAS  Google Scholar 

  39. Azcoitia I, Yague JG, Garcia-Segura LM (2011) Estradiol synthesis within the human brain. Neuroscience 191:139–147. https://doi.org/10.1016/j.neuroscience.2011.02.012

    Article  CAS  PubMed  Google Scholar 

  40. Jia M, Dahlman-Wright K, Gustafsson J (2015) Estrogen receptor alpha and beta in health and disease. Best Pract Res Clin Endocrinol Metab 29(4):557–568. https://doi.org/10.1016/j.beem.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  41. de Rivero VJP, Patel HH, Brand FJ, Perez-Pinzon MA, Bramlett HM, Raval AP (2016) Estrogen receptor beta signaling alters cellular inflammasomes activity after global cerebral ischemia in reproductively senescence female rats. J Neurochem 136(3):492–496. https://doi.org/10.1111/jnc.13404

    Article  CAS  Google Scholar 

  42. Liu F, Day M, Muñiz LC, Bitran D, Arias R, Revilla-Sanchez R, Grauer S, Zhang GM et al (2008) Activation of estrogen receptor-beta regulates hippocampal synaptic plasticity and improves memory. Nat Neurosci 11(3):334–343. https://doi.org/10.1038/nn2057

    Article  CAS  PubMed  Google Scholar 

  43. Grissom EM, Daniel JM (2016) Evidence for ligand-independent activation of hippocampal estrogen receptor-α by IGF-1 in hippocampus of ovariectomized rats. Endocrinology 157(8):3149–3156. https://doi.org/10.1210/en.2016-1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang QG, Raz L, Wang RM, Han D, De SL, Yang F, Vadlamudi RK, Brann DW (2009) Estrogen attenuates ischemic oxidative damage via an estrogen receptor alpha-mediated inhibition of NADPH oxidase activation. J Neurosci 29(44):13823–13836. https://doi.org/10.1523/JNEUROSCI.3574-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dubal DB, Zhu H, Yu J, Rau SW, Shughrue PJ, Merchenthaler I, Kindy MS, Wise PM (2001) Estrogen receptor alpha, not beta, is a critical link in estradiol-mediated protection against brain injury. Proc. Natl. Acad. Sci. U.S.A. 98(4):1952–1957. https://doi.org/10.1073/pnas.041483198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo H, Yang JR, Liu M, Wang L, Hou WG, Zhang LX, Ma YL (1726) Selective activation of estrogen receptor β alleviates cerebral ischemia neuroinflammatory injury. Brain Res 2020:146536. https://doi.org/10.1016/j.brainres.2019.146536

    Article  CAS  Google Scholar 

  47. Zhang QG, Han D, Wang RM, Dong Y, Yang F, Vadlamudi RK, Brann DW (2011) C terminus of Hsc70-interacting protein (CHIP)-mediated degradation of hippocampal estrogen receptor-alpha and the critical period hypothesis of estrogen neuroprotection. Proc. Natl. Acad. Sci. U.S.A. 108(35):E617–E624. https://doi.org/10.1073/pnas.1104391108

    Article  PubMed  PubMed Central  Google Scholar 

  48. Murphy LC, Weitsman GE, Skliris GP, Teh EM, Li L, Peng B, Davie JR, Ung K et al (2006) Potential role of estrogen receptor alpha (ERalpha) phosphorylated at Serine118 in human breast cancer in vivo. J Steroid Biochem Mol Biol 102:139–146. https://doi.org/10.1016/j.jsbmb.2006.09.021

    Article  CAS  PubMed  Google Scholar 

  49. Duplessis TT, Williams CC, Hill SM, Rowan BG (2011) Phosphorylation of estrogen receptor α at serine 118 directs recruitment of promoter complexes and gene-specific transcription. Endocrinology 152(6):2517–2526. https://doi.org/10.1210/en.2010-1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gibbs RB, Mauk R, Nelson D, Johnson DA (2009) Donepezil treatment restores the ability of estradiol to enhance cognitive performance in aged rats: evidence for the cholinergic basis of the critical period hypothesis. Horm Behav 56(1):73–83. https://doi.org/10.1016/j.yhbeh.2009.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Smith CC, Vedder LC, Nelson AR, Bredemann TM, McMahon LL (2010) Duration of estrogen deprivation, not chronological age, prevents estrogen's ability to enhance hippocampal synaptic physiology. Proc. Natl. Acad. Sci. U.S.A. 107(45):19543–19548. https://doi.org/10.1073/pnas.1009307107

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wu WW, Adelman JP, Maylie J (2011) Ovarian hormone deficiency reduces intrinsic excitability and abolishes acute estrogen sensitivity in hippocampal CA1 pyramidal neurons. J Neurosci 31(7):2638–2648. https://doi.org/10.1523/JNEUROSCI.6081-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McClure RE, Barha CK, Galea LA (2013) 17β-Estradiol, but not estrone, increases the survival and activation of new neurons in the hippocampus in response to spatial memory in adult female rats. Horm Behav 63(1):144–157. https://doi.org/10.1016/j.yhbeh.2012.09.011

    Article  CAS  PubMed  Google Scholar 

  54. Chow C, Epp JR, Lieblich SE, Barha CK, Galea LA (2013) Sex differences in neurogenesis and activation of new neurons in response to spatial learning and memory. Psychoneuroendocrinology 38(8):1236–1250. https://doi.org/10.1016/j.psyneuen.2012.11.007

    Article  PubMed  Google Scholar 

  55. Li J, Siegel M, Yuan M, Zeng Z, Finnucan L, Persky R, Hurn PD, McCullough LD (2011) Estrogen enhances neurogenesis and behavioral recovery after stroke. J Cereb Blood Flow Metab 31(2):413–425. https://doi.org/10.1038/jcbfm.2010.181

    Article  CAS  PubMed  Google Scholar 

  56. Badan I, Platt D, Kessler C, Popa-Wagner A (2003) Temporal dynamics of degenerative and regenerative events associated with cerebral ischemia in aged rats. Gerontology 49(6):356–365. https://doi.org/10.1159/000073763

    Article  CAS  PubMed  Google Scholar 

  57. Popa-Wagner A, Dinca I, Yalikun S, Walker L, Kroemer H, Kessler C (2006) Accelerated delimitation of the infarct zone by capillary-derived nestin-positive cells in aged rats. Curr Neurovasc Res 3(1):3–13. https://doi.org/10.2174/156720206775541732

    Article  PubMed  Google Scholar 

Download references

Funding Sources

This work was supported by the National Natural Science Foundation of China (no. 81901205, 81801138, 81971226, 81771411), the Beijing Natural Science Foundation (no. 7194321), Beijing Municipal Science and Technology Commission (no. 1811000017180022), Miaopu Foundation of Chinese PLA General Hospital (no. 18KMM47), and Key R&D projects in Shaanxi Province (no. 2017ZDXMSF059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei Qin or Wugang Hou.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dr. Pei Qin is the first corresponding author and Dr. Wugang Hou is the second corresponding author.

Electronic supplementary material

ESM 1

(DOC 6894 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Liu, M., Yang, L. et al. Loss of Estrogen Efficacy Against Hippocampus Damage in Long-Term OVX Mice Is Related to the Reduction of Hippocampus Local Estrogen Production and Estrogen Receptor Degradation. Mol Neurobiol 57, 3540–3551 (2020). https://doi.org/10.1007/s12035-020-01960-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01960-z

Keywords

Navigation