Skip to main content
Log in

Construction of biosensor for hypoxanthine determination by immobilization of xanthine oxidase and uricase in polypyrrole-paratoluenesulfonate film

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A highly selective and stable amperometric biosensor for the determination of the hypoxanthine (Hx) molecule was designed in this study. For this purpose, the enzyme electrode was prepared by immobilizing the xanthine oxidase (XnOx) and uricase (U) enzymes to the surface obtained by electrochemical polymerization in the presence of polypyrrole-paratoluenesulfonate (PPy-pTS) on the platinum (Pt) surface. The determination limit for the Hx molecule of the prepared biosensor was determined as 5 × 10−6 M, and the linear working range was determined as 5 ×10−6–5 × 10−3 M. At the end of 27 measurements, the biosensor preserved 70% of the initial amperometric response. At the end of the fourth 8 days, the enzyme electrode was observed to maintain 26% of the initial amperometric response. The KM value for Pt/PPy-pTS-XnOxU enzyme electrode system prepared by immobilizing XnOxU was found to be 0.05 mM, and Vmax was 0.56 μA/min. The effects of the interventions in biological environments on the biosensor response were examined. Also, since this biosensor has the potential to be used for the determination of Hx in synthetic samples, it can find an important field of study in the biological and food industry.

In this study, a highly selective and stable amperometric biosensor for determination of hypoxanthine was developed. For this reason, polypyrrole-paratoluenesulfonate films have been prepared on the platinum electrode by electropolymerization of pyrrole which was carried out in the presence of paratoluenesulfonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dave D, Ghaly AE (2011) Meat spoilage mechanisms and preservation techniques: a critical review. Am J Agric Biol Sci 6:486–510

    Article  CAS  Google Scholar 

  2. Gil L, Barat JM, Baigts D, Martínez-Máñez R, Soto J, Garcia-Breijo E, Aristoy MC, Toldrá F, Llobet E (2011) Monitoring of physical–chemical and microbiological changes in fresh pork meat under cold storage by means of a potentiometric electronic tongue. Food Chem 126(3):1261–1268

    Article  CAS  Google Scholar 

  3. Gil L, Barat JM, Garcia-Breijoa E, Ibañez J, Martínez Máñez R, Soto J, Llobetd E, Brezmes J, Aristoy MC, Toldrá F (2008) Fish freshness analysis using metallic potentiometric electrodes. Sensors Actuators B Chem 131(2:362–370

    Article  CAS  Google Scholar 

  4. Galgano F, Favati F, Bonadio M, Lorusso V, Romano P (2009) Role of biogenic amines as index of freshness in beef meat packed with different biopolymeric materials. Food Res Int 42(8):1147–1152

    Article  CAS  Google Scholar 

  5. Önal A (2007) A review: current analytical methods for the determination of biogenic amines in foods. Food Chem 103(4):1475–1486

    Article  CAS  Google Scholar 

  6. Vinci G, Antonelli M (2002) Biogenic amines: quality index of freshness in red and white meat. Food Control 13(8):519–524

    Article  CAS  Google Scholar 

  7. Agui L, Manso J, Yanez-Sedeno P, Pingarron JM (2006) Amperometric biosensor for hypoxanthine based on immobilized xanthine oxidase on nanocrystal gold–carbon paste electrodes. Sensors and Actuators B Chemistry 113(1):272–280

    Article  CAS  Google Scholar 

  8. Baş SZ, Gülce H, Yildiz S (2014) Hypoxanthine biosensor based on immobilization of xanthine oxidase on modified Pt electrode and its application for fish meat. Int J Polym Mater Polym Biomater 63(9):476–485

    Article  CAS  Google Scholar 

  9. Lawal AT, Adeloju SB (2012) Progress and recent advances in fabrication and utilization of hypoxanthine biosensors for meat and fish quality assessment: a review. Talanta 100:217–228

    Article  CAS  PubMed  Google Scholar 

  10. Lawal AT, Adeloju SB (2012) Mediated xanthine oxidase potentiometric biosensors for hypoxanthine based on ferrocene carboxylic acid modified electrode. Food Chem 135(4):2982–2987

    Article  CAS  PubMed  Google Scholar 

  11. Liu M, Chena S, Zhaoa X, Ye Y, Li J, Zhua Q, Zhao B, Zhao W, Huanga X, Shen J (2013) Biocompatible phosphonic acid-functionalized silica nanoparticles for sensitive detection of hypoxanthine in real samples. Talanta 117:536–542

    Article  CAS  PubMed  Google Scholar 

  12. Luong JHT, Male KB (1992) Development of a new biosensor system for the determination of the hypoxanthine ratio, an indicator of fish freshenss. Enzymatic Microbiological Technology 14(2):125–130

    Article  CAS  Google Scholar 

  13. Yao T (1993) Enzyme electrode for the successive detection of hypoxanthine and inosine. Analytica Chimica Acta 281:323–326

    Article  CAS  Google Scholar 

  14. Zhang J, Lei J, Pan R, Xue Y, Ju H (2010) Highly sensitive electrocatalytic biosensing of hypoxanthine based on functionalization of graphene sheets with water-soluble conducting graft copolymer. Biosens Bioelectron 26(2):371–376

    Article  PubMed  CAS  Google Scholar 

  15. Devi R, Batra B, Lata S, Yadav S, Pundir CS (2013) A method for determination of xanthine in meat by amperometric biosensor based on silver nanoparticles/cysteine modified Au electrode. Process Biochem 48(2):242–249

    Article  CAS  Google Scholar 

  16. Devi R, Thakur M, Pundir CS (2011) Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles–polypyrrole composite film. Biosens Bioelectron 26(8):3420–3426

    Article  CAS  PubMed  Google Scholar 

  17. Devi R, Yadav S, Nehra R, Pundir CS (2013) An amperometric hypoxanthine biosensor based on Au@FeNPs for determination of hypoxanthine in meat samples. International Journal of Bioligical Macromololecules 62:629–635

    Article  CAS  Google Scholar 

  18. Lawal AT, Adeloju SB (2013) Polypyrrole based amperometric and potentiometric phosphate biosensors: a comparative study B. Biosens Bioelectron 40(1):377–384

    Article  CAS  PubMed  Google Scholar 

  19. Öztürk FÖ, Erden E, Kaçar C, Kiliç E (2014) Amperometric biosensor for xanthine determination based on Fe3O4 nanoparticles. Acta Chimica Sylvatica 61(1):19–26

    Google Scholar 

  20. Shan D, Wang YN, Xue HG, Cosnier S, Ding SN (2009) Xanthine oxidase/laponite nanoparticles immobilized on glassy carbon electrode: direct electron transfer and multielectrocatalysis. Biosensors & Bioelectronics 24:3556–3561

    Article  CAS  Google Scholar 

  21. Hernández-Cázares AS, Aristoy MC, Toldrá F (2010) Hypoxanthine-based enzymatic sensor for determination of pork meat freshness. Food Chem 123(3):949–954

    Article  CAS  Google Scholar 

  22. Watanabe E, Endo H, Hayashi T, Toyama K (1986) Simultaneous determination of hypoxanthine and inosine with an enzyme sensor. Biosensors 2(4):235–244

    Article  CAS  Google Scholar 

  23. Yano Y, Kataho N, Watanabe M, Nakamura T, Asano Y (1995) Evaluation of beef aging by determination of hypoxanthine and xanthine contents: application of a xanthine sensor. Food Chem 52(4):439–445

    Article  CAS  Google Scholar 

  24. Yano Y, Yokoyama K, Tamiya E, Karube I (1996) Direct evaluation of meat spoilage and the progress of aging using biosensors. Anal Chim Acta 320(2-3):269–276

    Article  CAS  Google Scholar 

  25. Lawal AT, Adeloju SB (2010) Comparison of polypyrrole-based xanthine oxidase amperometric and potentiometric biosensors for hypoxanthine. J Mol Catal B Enzym 66(3–4):270–227

    Article  CAS  Google Scholar 

  26. Amigo JM, Coello J, Maspoch S (2005) Three-way partial least-squares regression for the simultaneous kinetic-enzymatic determination of xanthine and hypoxanthine in human urine. Anal Bioanal Chem 382(6):1380–1388

    Article  CAS  PubMed  Google Scholar 

  27. Weeranantanaphan J, Downey G, Allen P, Sun DW (2011) A review of near infrared spectroscopy in muscle food analysis: 2005–2010. J Infrared Spectrosc 19(2):61–104

    Article  CAS  Google Scholar 

  28. Akaoka I, Nishizawa T, Nishida Y (1975) Determination of hypoxanthine and xanthine in plasma separated by thin-layer chromatography. Biochemical Medical 14:285–289

    Article  CAS  Google Scholar 

  29. Cooper N, Khosravan R, Erdmann C, Fiene J, Lee JW (2006) Quantification of uric acid, xanthine and hypoxanthine in human serum by HPLC for pharmacodynamic studies. J Chromatogr B 837(1-2):1–10

    Article  CAS  Google Scholar 

  30. Rong S, Zou L, Zhang Y, Zhang G, Li X, Li M, Yang F, Li C, He Y, Guan H, Guo Y, Wang D, Cui X, Ye H, Liu F, Pan H, Yang Y (2015) Determination of purine contents in different parts of pork and beef by high performance liquid chromatography. Food Chem 170:303–307

    Article  CAS  PubMed  Google Scholar 

  31. Vallé M, Malle P, Bouquelet S (1998) Evaluation of fish decomposition by liquid chromatographic assay of ATP degradation product. J AOAC Int 81(3):571–575

    Article  Google Scholar 

  32. Ozer BO, Cete S (2017) Development of a novel biosensor based on a polypyrrole–dodecylbenzene sulphonate (PPy–DBS) film for the determination of amperometric cholesterol. Artificial Cells, Nanomedi Biotechnol 45(4):824–832

    Article  CAS  Google Scholar 

  33. Cete S, Yasar A, Arslan F (2007) Immobilization of uricase upon polypyrrole ferrocenium film. Artificial Cells Blood Substantial Biotechnology 35(6):607–620

    Article  CAS  Google Scholar 

  34. Dolmaci N, Cete S, Arslan F, Yasar A (2012) An amperometric biosensor for fish freshness detection from xanthine oxidase immobilized in polypyrrole–polyvinylsulphonate film. Artificial Cells Blood Substantial Biotechnology 40(4):275–279

    Article  CAS  Google Scholar 

  35. Gorgulu M, Cete S, Arslan H, Yasar A (2013) Preparing a new biosensor for hypoxanthine determination by immobilization of xanthine oxidase and uricase in polypyrrole–polyvinyl sulphonate film. Artificial Cells Blood Substantial Biotechnology 41(5):327–331

    Google Scholar 

  36. Teles FRR, Fonseca LP (2008) Applications of polymers for biomolecule immobilization in electrochemical biosensors. Materials Science Engineering: C 28(8):1530–1543

    Article  CAS  Google Scholar 

  37. Kim JH, Cho JH, Cha CS, Lee CW, Kim HB, Paek SH (2000) Conductimetric membrane strip immunosensor with polyaniline-bound gold colloids as signal generator. Biosens Bioelectron 14(12):907–915

    Article  CAS  PubMed  Google Scholar 

  38. Shin MC, Yoon HC, Kim SH (1996) In situ biochemical reduction of interference in an amperometric biosensor with a novel heterobilayer configuration of polypyrrole/glucose oxidase/horseradish peroxidase. Anal Chim Acta 329(3):223–230

    Article  CAS  Google Scholar 

  39. Soylemez S, Kanik FE, Tarkuc S, Udum YA, Toppare L (2013) A sepiolite modified conducting polymer based biosensor. Colloids Surf B: Biointerfaces 111:549–555

    Article  CAS  PubMed  Google Scholar 

  40. Soylemez S, Kanik FE, Nurioglu AG, AkpinarH TL (2013) A novel conducting copolymer: investigation of its matrix properties for cholesterol biosensor applications. Sensors Actuators B Chem 182:322–329

    Article  CAS  Google Scholar 

  41. Bal O, Cete S (2013) Preparation of Pt/polypyrrole–para toluene sulfonate hydrogen peroxide sensitive electrode for the utilizing as a biosensor. Artificial Cells, Blood Substitutes, and Biotechnology 41(6):414–420

    Google Scholar 

  42. Xiao Y, Li CM, Yu S, Zhou Q, Lee VS, Moochhala SM (2007) Synthesis and characterization of p-toluenesulfonate incorporated poly (3,4-ethylenedioxythiophene). Talanta 72(2):532–538

    Article  CAS  PubMed  Google Scholar 

  43. Sultana I, Rahman MM, Wang J, Wang C, Wallace GG, Hua-Kun L (2012) All-polymer battery system based on polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) and polypyrrole (PPy)/indigo carmine (IC) free standing films. Electrochimical Acta 83:209–215

    Article  CAS  Google Scholar 

  44. Chetna D, Singh SP, Sunil KA, Monika D, Malhotra BD (2007) Cholesterol biosensor based on electrophoretically deposited conducting polymer film derived from nano-structured polyaniline colloidal suspension. Anal Chim Acta 602:244–251

    Article  CAS  Google Scholar 

  45. Yildirimoglu F, Arslan F, Cete S, Yasar A (2009) Preparation of a polypyrrole-polyvinylsulphonate composite film biosensor for determination of cholesterol based on entrapment of cholesterol oxidase. Sensors 9(8):6435–6445

    Article  CAS  PubMed  Google Scholar 

  46. Çete S, Yasar A, Arslan F (2007) Immobilization of uricase upon polypyrroleferrocenium film. Artificial Cells, Blood Substitutes and Biotechnology 35(6):607–620

    Article  CAS  Google Scholar 

  47. Cete S, Karpuz G, Yasar A (2016) Preparation of a new uric acid biosensor with İmmobilization of uricase upon polypyrrole-paratoluene sulphonate film. Gazi University Journal of Science 29(2):293–301

    Google Scholar 

  48. Arora K, Sumana G, Saxena V, Gupta RK, Gupta SK, Yakhmi JV, Pandey MK, Chand S, Malhotra BD (2007) Improved performance of polyanilineuricase biosensor. Anal Chim Acta 594(1):17–23

    Article  CAS  PubMed  Google Scholar 

  49. Kirgöz ÜA, Timur S, Wang J, Telefoncu A (2004) Xanthine oxidase modified glassy carbon paste electrode. Electrochem Commun 6(9):913–916

    Article  CAS  Google Scholar 

  50. Stredonsky M, Pizzariello A, Miertus S, Suore J (2000) Selective and sensitive biosensor for theophylline based on xanthine oxidase electrode. Anal Biochem 258(2):225–229

    Article  CAS  Google Scholar 

  51. Arslan F (2008) An amperometric biosensor for uric acid determination prepared from uricase immobilized in polyaniline-polypyrrolefilm. Sensors 8(9):5492–5500

    Article  CAS  PubMed  Google Scholar 

  52. Kılınc E, Erdem A, Gocgunnec L, Dalbasti T, Karaoglan M, Ozsos M (1998) Butternilk based cobalt phthalocyanine dispersed ferricyanide mediated amperometric biosensor for the determination of xanthine. Electroanalysis 10(4):273–275

    Article  Google Scholar 

  53. Zhang F, Wang X, Ai S, Sun Z, Wan Q, Zhu Z, Xian Y, Jin L, Yamamoto K (2004) Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal Chim Acta 519(2):155–160

    Article  CAS  Google Scholar 

  54. Venugopal V (2002) Biosensors in fish production and quality control. Biosens Bioelectron 17(3):147–157

    Article  CAS  PubMed  Google Scholar 

  55. Radi R, Rubbo H, Bush K, Freeman BA (1997) Xanthine oxidase binding to Glycpsamin oglicans: kinetics and superoxide dismutase interactions of immobilized xanthine oxidase – heparin complexes. Arch Biochem Biophys 339(1):125–135

    Article  CAS  PubMed  Google Scholar 

  56. Albelda JAV, Uzunoglu A, Santos NGC, Stanciu LA (2017) Graphene-titanium dioxide nanocomposite based hypoxanthine sensor for assessment of meat freshness. Biosens Bioelectron 89(1):518–524

    Article  CAS  PubMed  Google Scholar 

  57. Mooltongchun M, Teepoo S (2019) A simple and cost-effective microfluidic paper-based biosensor analytical device and its application for hypoxanthine detection in meat samples. Food Anal Methods 12(12):2690–2698

    Article  Google Scholar 

  58. Wang Z, Ma B, Shen C, Lai QM, Tan CP, Cheong LZ (2019) Electrochemical biosensing of chilled seafood freshness by xanthine oxidase immobilized on copper-based metal–organic framework nanofiber film. Food Anal Methods 12(8):1715–1724

    Article  Google Scholar 

  59. Hua S, Xu C, Lu J, Luo J, Cui D (2000) Biosensor for detection of hypoxanthine based on xanthine oxidase immobilized on chemically modified carbon paste electrode. Anal Chim Acta 412(1–2):55–61

    Article  Google Scholar 

  60. Wang Y, Tong L (2010) Electrochemical sensor for simultaneous determination of uric acid, xanthine and hypoxanthine based on poly (bromocresol purple) modified glassy carbon electrode. Sensors Actuators B Chem 150(1):43–49

    Article  CAS  Google Scholar 

  61. Yao D, Vlessidis AG, Evmiridis NP (2003) Microdialysis sampling and monitoring of uric acid in vivo by a chemiluminescence reaction and an enzyme on immobilized chitosan support membrane. Anal Chim Acta 478(1):23–30

    Article  CAS  Google Scholar 

  62. Zen JM, Hsu CT (1998) A selective voltammetric method for uric acid detection at Nafion-coated carbon paste electrodes. Talanta 46(6):1363–1369

    Article  CAS  PubMed  Google Scholar 

  63. Qiong C, Tuzhi P, Liju Y (1998) Silk fibroin/cellulose acetate membrane electrodes incorporating xanthine oxidase for the determination of fish freshness. Anal Chim Acta 369(3):245–251

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Servet Cete.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erol, E., Yildirim, E. & Cete, S. Construction of biosensor for hypoxanthine determination by immobilization of xanthine oxidase and uricase in polypyrrole-paratoluenesulfonate film. J Solid State Electrochem 24, 1695–1707 (2020). https://doi.org/10.1007/s10008-020-04715-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04715-x

Keywords

Navigation