Skip to main content
Log in

Dry Sliding Wear Behavior of AZ91 Alloy Processed by Rotary-Die Equal Channel Angular Pressing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This research examines the effect of wear testing parameters on the wear behavior of AZ91 alloy prepared through rotary-die equal channel angular pressing (RD-ECAP). An AZ91 alloy was processed by RD-ECAP method at 573 K for up to 16 passes to reduce the grain size to ~ 5 µm. The properties of the alloys produced by RD-ECAP were compared with the as-received alloy. In order to measure the wear behavior of RD-ECAP manufactured alloy with the as-received alloy, wear tests were performed using ball-on-disk apparatus with specific loading conditions and varying sliding speeds. Surface analysis was used to show the presence of delamination, wear debris and plowing using scanning electron microscopes (SEM). The findings showed that, due to the grain refinement and homogeneity of the second phase distribution, RD-ECAP processed magnesium alloys possess increased wear resistance compared to the initial condition (unprocessed alloy), which makes them suitable for applications in aerospace, automotive and structural industries. Besides, the weight loss reduced with the increase of RD-ECAP pass numbers. Furthermore, increasing in applied load had a more dramatic effect on wear resistance compared to increasing sliding speed and sliding time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. M.K. Kulekci, Magnesium and Its Alloys Applications in Automotive Industry, Int. J. Adv. Manuf. Technol., 2007, 39(9–10), p 851–865

    Google Scholar 

  2. K. Hirai, H. Somekawa, Y. Takigawa, and K. Higashi, Effects of Ca and Sr Addition on Mechanical Properties of a Cast AZ91 Magnesium Alloy at Room and Elevated Temperature, Mater. Sci. Eng. A, 2005, 403(1–2), p 276–280

    Article  Google Scholar 

  3. Y.J. Chen, Q.D. Wang, J.G. Peng, C.Q. Zhai, and W.J. Ding, Effects of Extrusion Ratio on the Microstructure and Mechanical Properties of AZ31 Mg Alloy, J. Mater. Process. Technol., 2007, 182(1–3), p 281–285

    Article  CAS  Google Scholar 

  4. A. Singh and S.P. Harimkar, Laser Surface Engineering of Magnesium Alloys: A Review, JOM, 2012, 64(6), p 716–733

    Article  CAS  Google Scholar 

  5. J.X. Chen, L.L. Tan, X.M. Yu, I.P. Etim, M. Ibrahim, and K. Yang, Mechanical Properties of Magnesium Alloys for Medical Application: A Review, J. Mech. Behav. Biomed. Mater., 2018, 87, p 68–79

    Article  CAS  Google Scholar 

  6. X.B. Gong, H. Li, S.B. Kang, J.H. Cho, and S.Y. Li, Microstructure and Mechanical Properties of Twin-Roll Cast Mg-4.5Al-1.0Zn Sheets Processed by Differential Speed Rolling, Mater. Des., 2010, 31(3), p 1581–1587

    Article  CAS  Google Scholar 

  7. X.B. Gong, S.B. Kang, S.Y. Li, and J.H. Cho, Enhanced Plasticity of Twin-Roll Cast ZK60 Magnesium Alloy Through Differential Speed Rolling, Mater. Des., 2009, 30(9), p 3345–3350

    Article  CAS  Google Scholar 

  8. R.M. Wang, A. Eliezer, and E.M. Gutman, An Investigation on the Microstructure of an AM50 Magnesium Alloy, Mater. Sci. Eng. A, 2003, 355(1–2), p 201–207

    Article  Google Scholar 

  9. B.C. Pai, U.T.S. Pillai, P. Manikandan, and A. Srinivasan, Modification of AZ91 Mg Alloys for High Temperature Applications, Trans. Indian Inst. Met., 2012, 65(6), p 601–606

    Article  CAS  Google Scholar 

  10. E. Mostaed, M. Vedani, M. Hashempour, and M. Bestetti, Influence of ECAP Process on Mechanical and Corrosion Properties of Pure Mg and ZK60 Magnesium Alloy for Biodegradable Stent Applications, Biomatter, 2014, 4, p e28283

    Article  Google Scholar 

  11. A.A. Luo, Magnesium Casting Technology for Structural Applications, Journal of Magnesium and Alloys, 2013, 1(1), p 2–22

    Article  CAS  Google Scholar 

  12. M.V. Markushev, M.Y. Murashkin, P.B. Prangnell, A. Golinia, and O.A. Maiorova, Structure and Mechanical Behaviour of An Al-Mg alloy After Equal Channel Angular Extrusion, Nanostruct. Mater., 1999, 12, p 839–842

    Article  Google Scholar 

  13. G.K. Manjunath, K. Udaya Bhat, G.V. Preetham Kumar, and M.R. Ramesh, Microstructure and Wear Performance of ECAP Processed Cast Al-Zn-Mg Alloys, Trans. Indian Inst. Met., 2018, 71(8), p 1919–1931

    Article  CAS  Google Scholar 

  14. S. Surendarnath, K. Sankaranarayanasamy, and B. Ravisankar, A Comparative Study of Commercially Pure Aluminum Processed by ECAP Using Conventional and New Die, Mater. Manuf. Process., 2014, 29(10), p 1172–1178

    Article  CAS  Google Scholar 

  15. G. Faraji, P. Yavari, S. Aghdamifar, and M. Mosavi Mashhadi, Mechanical and Microstructural Properties of Ultra-fine Grained AZ91 Magnesium Alloy Tubes Processed via Multi Pass Tubular Channel Angular Pressing (TCAP), J. Mater. Sci. Technol., 2014, 30(2), p 134–138

    Article  CAS  Google Scholar 

  16. R.B. Figueiredo and T.G. Langdon, Principles of Grain Refinement in Magnesium Alloys Processed by Equal Channel Angular Pressing, J. Mater. Sci., 2009, 44(17), p 4758–4762

    Article  CAS  Google Scholar 

  17. J. Krolo, B. Lela, I. Dumanić, and F. Kozina, Statistical Analysis of the Combined ECAP and Heat Treatment for Recycling Aluminum Chips Without Remelting, Metals, 2019, 9(6), p 660

    Article  CAS  Google Scholar 

  18. K.R. Gopi, H.S. Nayaka, and S. Sahu, Corrosion Behavior of ECAP-Processed AM90 Magnesium Alloy, Arab. J. Sci. Eng., 2018, 43(9), p 4871–4878

    Article  CAS  Google Scholar 

  19. M.I. Abd El Aal, N. El Mahallawy, F.A. Shehata, M. Abd El Hameed, E.Y. Yoon, and H.S. Kim, Wear Properties of ECAP-Processed Ultrafine Grained Al-Cu Alloys, Mater. Sci. Eng. A, 2010, 527(16–17), p 3726–3732

    Article  Google Scholar 

  20. Q. Xu, A.B. Ma, Y.H. Li, B. Saleh, Y.C. Yuan, J.H. Jiang, and C.Y. Ni, Enhancement of Mechanical Properties and Rolling Formability in AZ91 Alloy by RD-ECAP Processing, Materials, 2019, 12(21), p 3503

    Article  CAS  Google Scholar 

  21. K.R. Gopi, Nayaka H. Shivananda, and S. Sahu, Microstructural Evolution and Strengthening of AM90 Magnesium Alloy Processed by ECAP, Arab. J. Sci. Eng., 2017, 42(11), p 4635–4647

    Article  CAS  Google Scholar 

  22. M. Saravanan, R.M. Pillai, B.C. Pai, M. Brahmakumar, and K.R. Ravi, Equal Channel Angular Pressing of Pure Aluminium-An Analysis, Bull. Mater. Sci., 2006, 29, p 679–684

    CAS  Google Scholar 

  23. K. Máthis, J. Gubicza, and N.H. Nam, Microstructure and Mechanical Behavior of AZ91 Mg Alloy Processed by Equal Channel Angular Pressing, J. Alloys Compd., 2005, 394(1–2), p 194–199

    Article  Google Scholar 

  24. M. Chegini, A. Fallahi, and M.H. Shaeri, Effect of Equal Channel Angular Pressing (ECAP) on Wear Behavior of Al-7075 Alloy, Procedia Mater. Sci., 2015, 11, p 95–100

    Article  CAS  Google Scholar 

  25. S.R. Kumar, K. Gudimetla, P. Venkatachalam, B. Ravisankar, and K. Jayasankar, Microstructural and Mechanical Properties of Al 7075 Alloy Processed by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2012, 533, p 50–54

    Article  CAS  Google Scholar 

  26. L.L. Gao and X.H. Cheng, Microstructure and Dry Sliding Wear Behavior of Cu-10%Al-4%Fe Alloy Produced by Equal Channel Angular Extrusion, Wear, 2008, 265(7–8), p 986–991

    Article  CAS  Google Scholar 

  27. C.T. Wang, N. Gao, R.J.K. Wood, and T.G. Langdon, Wear Behavior of An Aluminum Alloy Processed by Equal-Channel Angular Pressing, J. Mater. Sci., 2010, 46(1), p 123–130

    Article  Google Scholar 

  28. A.W. El-Morsy, Dry Sliding Wear Behavior of Hot Deformed Magnesium AZ61 Alloy as Influenced by the Sliding Conditions, Mater. Sci. Eng. A, 2008, 473(1–2), p 330–335

    Article  Google Scholar 

  29. G.A. Zhang, C.Y. Ma, and Q. Zhou, Semi-Solid Billets of AZ91D Magnesium Alloy Prepared by Forward Extrusion/Equal-Channel Angular Pressing, Adv. Mater. Res., 2011, 299–300, p 380–384

    Article  Google Scholar 

  30. M. Srinivasan, C. Loganathan, M. Kamaraj, Q.B. Nguyen, M. Gupta, and R. Narayanasamy, Sliding Wear Behaviour of AZ31B Magnesium Alloy and Nano-composite, Trans. Nonferr. Met. Soc. China, 2012, 22(1), p 60–65

    Article  CAS  Google Scholar 

  31. J. Xu, X.W. Wang, X.C. Zhu, M. Shiooyeh, J. Wongsa-Ngam, D.B. Shan, and T.G. Langdon, Dry Sliding Wear of An AZ31 Magnesium Alloy Processed by Equal-Channel Angular Pressing, J. Mater. Sci., 2013, 48(11), p 4117–4127

    Article  CAS  Google Scholar 

  32. K.R. Gopi and H.S. Nayaka, Tribological and Corrosion Properties of AM70 Magnesium Alloy Processed by Equal Channel Angular Pressing, J. Mater. Res., 2017, 32(11), p 1–8

    Article  Google Scholar 

  33. J.H. Chen, Y.C. Shen, C.G. Chao, and T.F. Liu, Wear Behavior and Microstructure of Mg-Sn Alloy Processed by Equal Channel Angular Extrusion, Materials (Basel), 2017, 10(11), p 1315

    Article  Google Scholar 

  34. G.M. Naik, S. Narendranath, and S.S. Satheesh Kumar, Effect of Grain Refinement on the Performance of AZ80 Mg Alloys During Wear and Corrosion, Adv. Mater. Res., 2018, 7(2), p 105–118

    Google Scholar 

  35. H.Y. Wang, E.B. Zhang, X.L. Nan, L. Zhang, Z.P. Guan, and Q.C. Jiang, A Comparison of Microstructure and Mechanical Properties of Mg-9Al-1Zn Sheets Rolled from As-cast, Cast-rolling and As-extruded alloys, Mater. Des., 2016, 89, p 167–172

    Article  CAS  Google Scholar 

  36. L.F. Wang, E. Mostaed, X.J. Cao, G.S. Huang, A. Fabrizi, F. Bonollo, C.Z. Chi, and M. Vedani, Effects of Texture and Grain Size on Mechanical Properties of AZ80 Magnesium Alloys at Lower Temperatures, Mater. Des., 2016, 89, p 1–8

    Article  Google Scholar 

  37. B. Saleh, J.H. Jiang, Q. Xu, R. Fathi, A.B. Ma, Y.H. Li, and L.S. Wang, Statistical Analysis of Dry Sliding Wear Process Parameters for AZ91 Alloy Processed by RD-ECAP Using Response Surface Methodology, Met. Mater. Int., 2020, https://doi.org/10.1007/s12540-020-00624-w

    Article  Google Scholar 

  38. W.J. Kim, C.W. An, Y.S. Kim, and S.I. Hong, Mechanical Properties and Microstructures of an AZ61 Mg Alloy Produced by Equal Channel Angular Pressing, Scripta Mater., 2002, 47, p 39–44

    Article  CAS  Google Scholar 

  39. W.J. Kim, S.I. Hong, Y.S. Kim, S.H. Min, H.T. Jeong, and J.D. Lee, Texture Development and Its Effect on Mechanical Properties of An AZ61 Mg Alloy Fabricated by Equal Channel Angular Pressing, Acta Mater., 2003, 51(11), p 3293–3307

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was founded by the National Natural Science Foundation of China (Grant Nos. 51979099 51774109 and 51701065), the Key Research and Development Project of Jiangsu Province (Grant No. BE2017148) and the Fundamental Research Funds for the Central Universities (Grant No. 2018B48414). Q.X. is grateful for the support from the China Scholarship Council and the W. M. Keck Center for Advanced Microscopy and Microanalysis at University of Delaware.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Ma, A., Saleh, B. et al. Dry Sliding Wear Behavior of AZ91 Alloy Processed by Rotary-Die Equal Channel Angular Pressing. J. of Materi Eng and Perform 29, 3961–3973 (2020). https://doi.org/10.1007/s11665-020-04883-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04883-x

Keywords

Navigation