Skip to main content
Log in

Prediction of Forming of AA 5052-H32 Sheets under Impact Loading and Experimental Validation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study aims to elaborate the influence of bending prestrain, pressure, and sheet thickness on the forming behavior of AA 5052-H32 sheets deformed at a high velocity using a shock tube. The forming parameters, including the dome height, strain evolution, effective strain, and stress distribution, are evaluated through shock tube experiments and finite element simulations in DEFORM-3D; the numerical and experimental results are compared for validation. The rate-dependent material properties from both the prestrained sheets and the shock-deformed sheets are incorporated into the simulations. The forming process is modeled in a single step without considering prestrain application. Instead, the mechanical properties obtained from the actual prestrained sheets are provided as input to the numerical models before forming. The sharp increase in strain evolution matches quite well with the experimental results obtained by the strain rosette. This agreement confirms the strain rate of the sheet during the forming process. Circular grids are printed on the sheets, and Hill’s yield criterion is used to calculate the effective strain. Moreover, Hollomon’s power law is used to calculate the effective stress in the same location. The simulated effective stress and strain distribution matches quite well with the experimental results with a slight overprediction. The distribution of the stress and strain confirms the uniform stretching of the material without strain localization. The variation in the forming parameters indicates that the forming behavior is dependent on the degree of prestrain, and the forming parameters increase monotonically with the increase in pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. I.N. Fridlyander, V.G. Sister, O.E. Grushko, V.V. Berstenev, L.M. Sheveleva, and L.A. Ivanova, Aluminum Alloys: Promising Materials in the Automotive Industry, Met. Sci. Heat Treat., 2002, 44(9), p 365–370

    Article  CAS  Google Scholar 

  2. E. Hsu, J.E. Carsley, and R. Verma, Development of Forming Limit Diagrams of Aluminum and Magnesium Sheet Alloys at Elevated Temperatures, J. Mater. Eng. Perform., 2008, 17(3), p 288–296

    Article  CAS  Google Scholar 

  3. W.S. Miller, L. Zhuang, J. Bottema, A. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Recent Development in Aluminium Alloys for the Automotive Industry, Mater. Sci. Eng. A, 2000, 280(1), p 37–49

    Article  Google Scholar 

  4. D. Li and A.K. Ghosh, Effects of Temperature and Blank Holding Force on Biaxial Forming Behavior of Aluminum Sheet Alloys, J. Mater. Eng. Perform., 2004, 13(3), p 348–360

    Article  CAS  Google Scholar 

  5. S. Golovashchenko and A. Krause, Improvement of Formability of 6xxx Aluminum Alloys Using Incremental Forming Technology, J. Mater. Eng. Perform., 2005, 14(4), p 503–507

    Article  CAS  Google Scholar 

  6. R. Gu, Q. Liu, S. Chen, W. Wang, and X. Wei, Study on High-Temperature Mechanical Properties and Forming Limit Diagram of 7075 Aluminum Alloy Sheet in Hot Stamping, J. Mater. Eng. Perform., 2019, 28(12), p 7259–7272

    Article  CAS  Google Scholar 

  7. V. Grolleau, G. Gary, and D. Mohr, Biaxial Testing of Sheet Materials at High Strain Rates Using Viscoelastic Bars, Exp. Mech., 2008, 48(3), p 293–306

    Article  Google Scholar 

  8. M. Ahmed, D.R. Kumar, and M. Nabi, Enhancement of Formability of AA5052 Alloy Sheets by Electrohydraulic Forming Process, J. Mater. Eng. Perform., 2017, 26(1), p 439–452

    Article  CAS  Google Scholar 

  9. S.F. Golovashchenko, Material Formability and Coil Design in Electromagnetic Forming, J. Mater. Eng. Perform., 2007, 16(3), p 314–320

    Article  CAS  Google Scholar 

  10. Y. Luo, C. Miller, G. Luckey, P. Friedman, and Y. Peng, On Practical Forming Limits in Superplastic Forming of Aluminum Sheet, J. Mater. Eng. Perform., 2007, 16(3), p 274–283

    Article  CAS  Google Scholar 

  11. R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd, and M. Finn, High Strain Rate Tensile Testing of Automotive Aluminum Alloy Sheet, Int. J. Impact Eng., 2006, 32(4), p 541–560

    Google Scholar 

  12. S. Mahabunphachai and M. Koç, Investigations on Forming of Aluminum 5052 and 6061 Sheet Alloys at Warm Temperatures, Mater. Des., 2010, 31(5), p 2422–2434

    Article  CAS  Google Scholar 

  13. P. Broomhead and R.J. Grieve, The Effect of Strain Rate on the Strain to Fracture of a Sheet Steel under Biaxial Tensile Stress Conditions, Trans. ASME J. Engng Mater. Technol., 1982, 104(1), p 102–106

    Article  CAS  Google Scholar 

  14. V.S. Balanethiram and G.S. Daehn, Enhanced Formability of Interstitial Free Iron at High Strain Rates, Scr. Metall. Mater., 1992, 27(12), p 1783–1788

    Article  CAS  Google Scholar 

  15. A.S. Kumar, K.U. Gokul, P.V.K. Rao, and A. Jagannadham, Blast Loading of Underwater Targets—A Study through Explosion Bulge Test Experiments, Int. J. Impact Eng., Elsevier, 2015, 76(3), p 189–195

  16. V. Jenkouk, S. Patil, and B. Markert, Joining of Tubes by Gas Detonation Forming, Journal of Physics: Conference Series, 2016, p 32101

  17. S.P. Patil, M. Popli, V. Jenkouk, and B. Markert, Numerical Modelling of the Gas Detonation Process of Sheet Metal Forming, Journal of Physics: Conference Series, 2016, p 32099

  18. D.A. Oliveira, M.J. Worswick, M. Finn, and D. Newman, Electromagnetic Forming of Aluminum Alloy Sheet: Free-Form and Cavity Fill Experiments and Model, J. Mater. Process. Technol., 2005, 170(2), p 350–362

    Article  CAS  Google Scholar 

  19. J. Liu, Z. Wang, and Q. Meng, Numerical Investigations on the Influence of Superimposed Double-Sided Pressure on the Formability of Biaxially Stretched AA6111-T4 Sheet Metal, J. Mater. Eng. Perform., 2012, 21(4), p 429–436

    Article  CAS  Google Scholar 

  20. S.P. Patil, K.G. Prajapati, V. Jenkouk, H. Olivier, and B. Markert, Experimental and Numerical Studies of Sheet Metal Forming with Damage Using Gas Detonation Process, Materials, 2017, 7(12), p 556

  21. M. Stoffel, R. Schmidt, and D. Weichert, Shock Wave-Loaded Plates, Int. J. Solids Struct., 2001, 38(43), p 7659–7680

    Article  Google Scholar 

  22. P. Kumar, J. LeBlanc, D.S. Stargel, and A. Shukla, Effect of Plate Curvature on Blast Response of Aluminum Panels, Int. J. Impact Eng., 2012, 46, p 74–85

    Article  Google Scholar 

  23. B. Justusson, M. Pankow, C. Heinrich, M. Rudolph, and A.M. Waas, Use of a Shock Tube to Determine the Bi-Axial Yield of an Aluminum Alloy under High Rates, Int. J. Impact Eng., 2013, 58, p 55–65

    Article  Google Scholar 

  24. N. Ray, G. Jagadeesh, and S. Suwas, Response of Shock Wave Deformation in AA5086 Aluminum Alloy, Mater. Sci. Eng. A, 2015, 622, p 219–227

    Article  CAS  Google Scholar 

  25. A. Bisht, L. Kumar, J. Subburaj, G. Jagadeesh, and S. Suwas, Effect of Stacking Fault Energy on the Evolution of Microstructure and Texture during Blast Assisted Deformation of FCC Materials, J. Mater. Process. Technol., 2019, 271, p 568–583

    Article  CAS  Google Scholar 

  26. S.P. Patil, R. Murkute, N. Shirafkan, and B. Markert, Deformation of Stacked Metallic Sheets by Shock Wave Loading, Materials, 2018, 8(9), p 679

  27. S.P. Patil, Y. Fenard, S. Bailkeri, K.A. Heufer, and B. Markert, Investigation of Sheet Metal Forming Using a Rapid Compression Machine, Materials, 2019, 12(23), p 3957

  28. M.A. Louar, B. Belkassem, H. Ousji, K. Spranghers, D. Kakogiannis, L. Pyl, and J. Vantomme, Explosive Driven Shock Tube Loading of Aluminium Plates: Experimental Study, Int. J. Impact Eng., 2015, 86, p 111–123

    Article  Google Scholar 

  29. Z. Wang, L. Jing, J. Ning, and L. Zhao, The Structural Response of Clamped Sandwich Beams Subjected to Impact Loading, Compos. Struct., 2011, 93(4), p 1300–1308

    Article  Google Scholar 

  30. C. Li, D. Liu, H. Yu, and Z. Ji, Research on Formability of 5052 Aluminum Alloy Sheet in a Quasi-Static–Dynamic Tensile Process, Int. J. Mach. Tools Manuf., 2009, 49(2), p 117–124

    Article  CAS  Google Scholar 

  31. D. Liu, H. Yu, and C. Li, Experimental Observations of Quasi-Static-Dynamic Formability in Biaxially Strained AA5052-O, J. Mater. Eng. Perform., 2011, 20(2), p 223–230

    Article  CAS  Google Scholar 

  32. G. Li, J.T. Jinn, W.T. Wu, and S.I. Oh, Recent Development and Applications of Three-Dimensional Finite Element Modeling in Bulk Forming Processes, J. Mater. Process. Technol., 2001, 113(3), p 40–45

    Article  Google Scholar 

  33. R. Jain, S.K. Pal, and S.B. Singh, Numerical Modeling Methodologies for Friction Stir Welding Process, Comput Meth.Proc. Eng., 2017, p 125–169

  34. K. Gök and M. Aydin, Investigations of Friction Stir Welding Process Using Finite Element Method, Int. J. Adv. Manuf. Technol., 2013, 68(4), p 775–780

    Article  Google Scholar 

  35. R. Jain, S.K. Pal, and S.B. Singh, Thermomechanical Simulation of Friction Stir Welding Process Using Lagrangian Method, Simulations for Design and Manufacturing, 2018, p 103–146

  36. J. Fluhrer, DEFORM 3D Version 6.1 User’s Manual, Sci. Form. Technol. Corp. Ohio, 2007

  37. D.M. Neto, M.C. Oliveira, J.L. Alves, and L.F. Menezes, Influence of the Plastic Anisotropy Modelling in the Reverse Deep Drawing Process Simulation, Mater. Des., 2014, 60, p 368–379

    Article  Google Scholar 

  38. R.H. Wagoner and J.L. Chenot, Fundamentals of Metal Forming, Wiley, London, 1996

    Google Scholar 

  39. D.H. Liu, C.-F. Li, and H.-P. Yu, Numerical Modeling and Deformation Analysis for Electromagnetically Assisted Deep Drawing of AA5052 Sheet, Trans. Nonferrous Met. Soc. China, 2009, 19(5), p 1294–1302

    Article  CAS  Google Scholar 

  40. X. Cui, J. Mo, J. Li, X. Xiao, B. Zhou, and J. Fang, Large-Scale Sheet Deformation Process by Electromagnetic Incremental Forming Combined with Stretch Forming, J. Mater. Process. Technol., 2016, 237, p 139–154

    Article  Google Scholar 

  41. N. Nanda, S. R., Kulkarni, V., & Sahoo, Apt Strain Measurement Technique for Impulsive Loading Applications, Meas. Sci. Technol., 2017, 28(3), p 037001

  42. National Instruments, Strain Gauge Measurement – A Tutorial, Appl. Note, 1998, 078, p 1–12

    Google Scholar 

Download references

Acknowledgments

The authors are highly grateful to “Aeronautical Research and Development Board (AR & DB) India” for the financial support toward the fabrication of the shock tube experimental facility at IIT Guwahati. The authors would also like to express their gratitude to Central Instruments Facility, IIT Guwahati, for providing mechanical testing facility to conduct tensile tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ganesh Narayanan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, S.K., Narayanan, R.G. & Sahoo, N. Prediction of Forming of AA 5052-H32 Sheets under Impact Loading and Experimental Validation. J. of Materi Eng and Perform 29, 3941–3960 (2020). https://doi.org/10.1007/s11665-020-04884-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04884-w

Keywords

Navigation