Skip to main content
Log in

Comparative study of the SBP-box gene family in rice siblings

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

SBP-box genes are a class of plant-specific transcription factors which have a common DNA-binding domain (SBP-domain) with an unusual zinc-finger architecture. Many of the genes in this class are thought to play a developmental role and a few are involved in the determination of plant architecture. We have made a comparative study of these genes in the genomes of rice (Oryza sativa japonica and Oryza sativa indica) and its nine siblings using a recently proposed hybrid method for orthology and paralogy detection (HyPPO). According to HyPPO, the SBP-box proteins of rice siblings could be divided into twenty primary orthologous groups on the basis of their overall sequence features. This contrasts with a much less number of groups found in earlier work with other plant genomes using phylogenetic analysis of the SBP-domains only. The orthologous groups reported by HyPPO showed close correspondence in exon–intron structure and motif conservation. Comparison between different Oryza species revealed disparity in the maintenance of orthologous genes which may result in their different developmental characteristics. Inclusion of the SBP-box proteins from A. thaliana did not result in any change in the orthologous groups except for the A. thaliana proteins being added to some of the existing groups. The closer correspondence between the proteins in the primary orthologous clusters is expected to help in a more reliable prediction of their functions. It is also expected to provide better insight into the evolutionary history of this class of plant-specific proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abdullah M, Cao Y, Cheng X, Shakoor A, Su X, Gao J and Cai Y 2018 Genome-wide analysis characterization and evolution of SBP genes in Fragaria vesca, Pyrus bretschneideri, Prunus persica and Prunus mume. Front. Genet. 9 64

    PubMed  PubMed Central  Google Scholar 

  • Altenhoff AM, Studer RA, Robinson-Rechavi M, and Dessimoz C 2012 Resolving the ortholog conjecture: orthologs tend to be weakly, but significantly, more similar in function than paralogs. PLoS Comput. Biol. 8 e1002514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Altenhoff AM, Gil M, Gonnet GH and Dessimoz C 2013 Inferring hierarchical orthologous groups from orthologous gene pairs. PLoS One 8 https://doi.org/10.1371/journal.pone.0053786

  • Bailey PC, Dicks J, Wang TL and Martin C 2008 IT3F: a web-based tool for functional analysis of transcription factors in plants. Phytochemistry 69 2417–2425

    CAS  PubMed  Google Scholar 

  • Bhowmick P, and Guharoy M, Tompa P. 2015 Bioinformatics Approaches for Predicting Disordered Protein Motifs. Adv. Exp. Med. Biol. 870 291–318

    CAS  PubMed  Google Scholar 

  • Birkenbihl RP, Jach G, Saedler H, and Huijser P 2005 Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains. J. Mol. Biol. 352 585–596

    CAS  PubMed  Google Scholar 

  • Brown CJ, Takayama S, Campen AM, Vise P, Marshall TW, Oldfield CJ, Williams CJ and Dunker AK 2002 Evolutionary rate heterogeneity in proteins with long disordered regions. J. Mol. Evol. 55 104–110

    CAS  PubMed  Google Scholar 

  • Chen X, Zhang Z, Liu D, Zhang K, Li A and Mao L 2010 SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. J. Integr. Plant Biol. 52 946–951

    CAS  PubMed  Google Scholar 

  • Costantini S, Colonna G and Facchiano AM 2006 Amino acid propensities for secondary structures are influenced by the protein structural class. Biochem. Biophys. Res. Commun. 342 441–451

    CAS  PubMed  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM and Brenner SE 2004. WebLogo: a sequence logo generator. Genome Res. 14 1188–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davey NE, Haslam NJ, Shields DC and Edwards RJ 2011 SLiMSearch 2.0: biological context for short linear motifs in proteins. Nucleic Acids Res. 39 W56–W60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR and Sonnhammer EL 2013 Pfam: the protein families database. Nucleic Acids Res. 42 D222–D230

    PubMed  PubMed Central  Google Scholar 

  • Finn RD, Clements J and Eddy SR 2011 HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39 W29–W37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fitch WM 1970 Distinguishing homologous from analogous proteins. Syst. Zool. 19 99–113

    CAS  PubMed  Google Scholar 

  • Gabaldón T and Koonin EV 2013 Functional and evolutionary implications of gene orthology. Nat. Rev. Genet. 14 360–366

    PubMed  PubMed Central  Google Scholar 

  • Gao K, Miller J 2020 Primary orthologs from local sequence context. BMC Bioinform. 21 48

    CAS  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J and Rokhsar DS 2011 Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40 D1178–D1186

    PubMed  PubMed Central  Google Scholar 

  • Garcia-Molina A, Xing S and Huijser P 2014 Functional characterisation of Arabidopsis SPL7 conserved protein domains suggests novel regulatory mechanisms in the Cu deficiency response. BMC Plant Biol. 14 231

    PubMed  PubMed Central  Google Scholar 

  • Hammesfahr B, Odronitz F, Mühlhausen S, Waack S and Kollmar M 2013 GenePainter: a fast tool for aligning gene structures of eukaryotic protein families, visualizing the alignments and mapping gene structures onto protein structures. BMC Bioinformatics 14 77

    PubMed  PubMed Central  Google Scholar 

  • Hou H, Li J, Gao M, Singer SD, Wang H, Mao L, Fei Z and Wang X 2013 Genomic organization, phylogenetic comparison and differential expression of the SBP-box family genes in grape. PLoS One 8 e59358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh T, Tanaka T, Barrero RA, Yamasaki C, Fujii Y, Hilton PB and Bureau T 2007 Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res. 17 175–183

    PubMed  PubMed Central  Google Scholar 

  • Iwema T, Chaumot A, Studer RA, Robinson-Rechavi M, Billas IML, Moras D, Laudet V and Bonneton F 2009 Structural and evolutionary innovation of the heterodimerization interface between USP and the ecdysone receptor ECR in insects. Mol. Biol. Evol. 26 753–768

    CAS  PubMed  Google Scholar 

  • Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G and Qian Q 2010 Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Na. Genet. 42 541

    CAS  Google Scholar 

  • Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J and Gao G 2016 PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 45 D1040–D1045

    PubMed  PubMed Central  Google Scholar 

  • Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, et al. 2013 Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6 4

    PubMed  PubMed Central  Google Scholar 

  • Koonin EV 2005 Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 39 309–338

    CAS  PubMed  Google Scholar 

  • Kurata N and Yamazaki Y 2006 Oryzabase. An integrated biological and genome information database for rice. Plant Physiol. 140 12–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein J, Saedler H and Huijser P 1996 A new family of DNA binding proteins includes putative transcriptional regulators of theAntirrhinum majus floral meristem identity gene SQUAMOSA. Mol. Gen. Genet. 250 7–16

    CAS  PubMed  Google Scholar 

  • Lafond M, Meghdari Miardan M and Sankoff D 2018 Accurate prediction of orthologs in the presence of divergence after duplication. Bioinformatics 34 i366–i375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Park JJ, Kim SL, Yim J and An G 2007 Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule and laminar joint. Plant Mol. Biol. 65 487–499

    CAS  PubMed  Google Scholar 

  • Li L, Stoeckert CJ and Roos DS 2003 OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13 2178–2189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li XY, Lin EP, Huang HH, Niu MY, Tong ZK, Zhang JH 2018 Molecular Characterization of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Family in Betula luminifera. Front. Plant Sci. 9 https://doi.org/10.3389/fpls.2018.00608

  • Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K and Ashikari M 2010 OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 2 545

    Google Scholar 

  • Nehrt NL, Clark WT, Radivojac P and Hahn MW 2011 Testing the ortholog conjecture with comparative functional genomic data from mammals. PLoS Comput. Biol.7 https://doi.org/10.1371/journal.pcbi.1002073

  • Pace CN and Scholtz JM 1998 A helix propensity scale based on experimental studies of peptides and proteins. Biophys. J. 75 422–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riese M, Höhmann S, Saedler H, Münster T and Huijser P 2007 Comparative analysis of the SBP-box gene families in P. patens and seed plants. Gene 401 28–37

    CAS  PubMed  Google Scholar 

  • Roth AC, Gonnet GH and Dessimoz C 2008 Algorithm of OMA for large-scale orthology inference. BMC Bioinform. 9 518

    Google Scholar 

  • Schultz J, Copley RR, Doerks T, Ponting CP and Bork P 2000 SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28 231–234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Si L, Chen J, Huang X, Gong H, Luo J, Hou Q and Chen E 2016 OsSPL13 controls grain size in cultivated rice. Nat. Genet. 48 447

    CAS  PubMed  Google Scholar 

  • Studer RA and Robinson-Rechavi M 2009 How confident can we be that orthologs are similar, but paralogs differ? Trends Genet. 25 210–216

    CAS  PubMed  Google Scholar 

  • Sydykova DK, Jack BR, Spielman SJ and Wilke CO 2017 Measuring evolutionary rates of proteins in a structural context. F1000Res 6 1845

  • Train CM, Glover NM, Gonnet GH, Altenhoff AM and Dessimoz C 2017 Orthologous Matrix (OMA) algorithm 2.0: more robust to asymmetric evolutionary rates and more scalable hierarchical orthologous group inference. Bioinformatics 33 i75–i82

    CAS  PubMed  PubMed Central  Google Scholar 

  • van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, et al. 2014 Classification of intrinsically disordered regions and proteins. Chem. Rev. 114 6589–6631

    PubMed  PubMed Central  Google Scholar 

  • Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ and Davey NE 2014 Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem. Rev. 114 6733–6778

    PubMed  Google Scholar 

  • Varadi M, Guharoy M, Zsolyomi F and Tompa P 2015 DisCons: a novel tool to quantify and classify evolutionary conservation of intrinsic protein disorder. BMC Bioinform. 16 https://doi.org/10.1186/s12859-015-0592-2

  • Voordeckers K, Pougach K and Verstrepen KJ 2015 How do regulatory networks evolve and expand throughout evolution? Curr. Opin. Biotechnol. 34 180–188

    CAS  PubMed  Google Scholar 

  • Wang L, Sun S, Jin J, Fu D, Yang X, Weng X and Zhang Q 2015 Coordinated regulation of vegetative and reproductive branching in rice. Proc. Nat. Acad. Sci. 112 15504–15509

    CAS  PubMed  Google Scholar 

  • Wang P, Chen D, Zheng Y, Jin S, Yang J and Ye N 2018 Identification and Expression Analyses of SBP-Box Genes Reveal Their Involvement in Abiotic Stress and Hormone Response in Tea Plant (Camellia sinensis). Int. J. Mol. Sci. 19 3404

    PubMed Central  Google Scholar 

  • Xie K, Wu C and Xiong L 2006 Genomic organization, differential expression and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol. 142 280–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Hu T, Zhao J, Park MY, Earley KW, Wu G and Poethig RS 2016 Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genet. 12 e1006263 https://doi.org/10.1371/journal.pgen.1006263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, et al. 2004 A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors. J. Mol. Biol. 337 49–63

    CAS  PubMed  Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M, Yamasaki T, Yabuki T, Aoki M and Shirouzu M 2006 An Arabidopsis SBP-domain fragment with a disrupted C-terminal zinc-binding site retains its tertiary structure. FEBS Lett. 580 2109–2116

    CAS  PubMed  Google Scholar 

  • Yang Z, Wang X, Gu S, Hu Z, Xu H and Xu C 2008 Comparative study of SBP-box gene family in Arabidopsis and rice. Gene 407 1–11

    CAS  PubMed  Google Scholar 

  • Zhong H, Kong W, Gong Z, Fang X, Liu C and Li Y 2019 Evolutionary analyses reveals diverged patterns of SQUAMOSA promoter binding protein-like (SPL) gene families in Oryza genus. Front. Plant 10 565

    Google Scholar 

Download references

Acknowledgements

PRA acknowledges the support from the funding agency DST/INSPIRE (DST/Inspire Fellowship 2015/IF150448; dated: 24/08/2015). The authors extend their thanks to Dr. Manuel Lafond for his technical assistance and guidance. PRA also acknowledges Dr. Ananyo Chowdhury for the initial problem in this study and Dr. Saikat Dutta Chowdhury for his technical assistance and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansuman Lahiri.

Additional information

Corresponding editor: BJ Rao

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8067 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, P.R., Lahiri, A. Comparative study of the SBP-box gene family in rice siblings. J Biosci 45, 83 (2020). https://doi.org/10.1007/s12038-020-00048-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-00048-z

Keywords

Navigation