Skip to main content

Advertisement

Log in

Numerical simulation of CO2 leakage in a shallow subsurface layer from a CO2 geological storage site

Simulation numérique de fuites de CO2 dans une couche de sub-surface peu profonde à partir d’un site de stockage géologique de CO2

Simulación numérica de la filtración de CO2 en una capa subsuperficial poco profunda en un sitio de almacenamiento geológico de CO2

CO2地质封存场地浅层地下层CO2泄漏的数值模拟

Simulação numérica do vazamento de CO2 em uma camada subsuperficial rasa de um sítio de armazenamento geológico de CO2

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In an effort to detect and quantify potential CO2 leakage from geologic storage sites, this work investigates the migration process of CO2 leaked in a shallow subsurface associated with the CO2 sequestration project at Shaanxi, China. A shallow subsurface model with aquifer and soil layers was established, and the sensitivities of leakage rate and geological conditions were analysed. The results show that the distribution morphology of the CO2 plume is generally mushroom-shaped when the leaked CO2 enters the formation as a point source. Maximum leakage occurs at the soil surface due to the comprehensive effects of pressure, concentration, and density differences between CO2 and soil gas. The mass fraction of CO2 in gas is approximately 0.38–0.48 near the surface leak point, and leaked CO2 moves laterally along the bottom of the soil vadose zone. The leakage rate of CO2 significantly affects the pressure build-up as observed for an increase in the CO2 leakage rate from 0.0002 to 0.02 kg/s. In addition to the loess beam area, the migration process of CO2 leakage in the valley terrace area was also studied. The results show that the CO2 concentration in the leakage centre area of the valley terrace is not much different from that in the loess beam. Moreover, the surface leakage range in the valley terrace is much smaller than that in the loess beam, which is because of the differences in the formation composition and thickness. Heterogeneity has limited effect on leakage.

Résumé

Dans le but de détecter et de quantifier les fuites potentielles de CO2 provenant de sites de stockage géologique, ces travaux étudient le processus de migration du CO2 issu de fuite dans une couche de sub-surface peu profond associée au projet de séquestration du CO2 à Shaanxi, en Chine. Un modèle du sous-sol peu profond avec des couches d’aquifère et de sol a été établi, et les sensibilités du taux de fuite et des conditions géologiques ont été analysées. Les résultats montrent que la morphologie de distribution du panache de CO2 est généralement en forme de champignon lorsque la fuite de CO2 pénètre la formation en un point source unique. Des fuites maximales se produisent à la surface du sol en raison des effets compressifs de la pression, de la concentration, et des différences de densité entre le CO2 et les gaz du sol. La fraction de masse du CO2 dans le gaz est d’environ 0.38–0.48 près du point de fuite de surface, et la fuite de CO2 se déplace latéralement le long de la base de la zone vadose du sol. Le taux de fuites de CO2 affecte considérablement l’accumulation de pression telle qu’observée pour une augmentation du taux de fuites de CO2 de 0.0002 à 0.02 kg/s. En plus de la zone de loess en forme de faisceau, le processus de migration des fuites de CO2 dans la zone de terrasses alluviales a également été étudié. Les résultats montrent que la concentration de CO2 dans la région centrale des fuites de la terrasse alluviale n’est pas très différente de celle de la zone de loess en forme de faisceau. En outre, la gamme de fuites de surface dans la terrasse alluviale est beaucoup plus petite que celle dans le secteur en loess en forme de faisceau, ce qui s’explique de part des différences de composition et d’épaisseur de la formation. L’hétérogénéité a un effet limité sur les fuites.

Resumen

En un esfuerzo por detectar y cuantificar las potenciales filtraciones de CO2 en sitios de almacenamiento geológico, este trabajo investiga el proceso de migración del CO2 filtrado en una sub-superficie poco profunda asociada con el proyecto de secuestro de CO2 en Shaanxi, China. Se estableció un modelo de subsuperficie poco profunda con niveles de acuífero y suelo, y se analizaron las sensibilidades de la tasa de filtración y las condiciones geológicas. Los resultados muestran que la morfología de la distribución de la pluma de CO2 tiene generalmente forma de hongo cuando el CO2 filtrado entra en la formación como fuente puntual. La máxima filtración se produce en la superficie del suelo debido a los efectos integrales de las diferencias de presión, concentración y densidad entre el CO2 y el aire en el suelo. La fracción de masa de CO2 en el aire es aproximadamente 0.38–0.48 cerca del punto de filtración en la superficie, y el CO2 filtrado se mueve lateralmente a lo largo del fondo de la zona vadosa del suelo. La tasa de filtración de CO2 afecta significativamente la acumulación de presión, como se observa en el aumento de la tasa de filtración de CO2 de 0.0002 a 0.02 kg/s. Además de la zona del manto de loess, también se estudió el proceso de migración de la filtración de CO2 en la zona de la terraza del valle. Los resultados muestran que la concentración de CO2 en el área del centro de la filtración de la terraza del valle no es muy diferente de la del manto de loess. Además, el rango de filtración sobre la superficie en la terraza del valle es muy inferior al del manto de loess, lo que se debe a las diferencias en la composición y los espesores de la formación. La heterogeneidad tiene un efecto limitado sobre las filtraciones.

摘要

为了探知和量化地质封存场地潜在的CO2泄漏问题, 本工作调查了与中国陕西省CO2封存项目相关的浅层地下CO2泄漏的迁移过程。建立了具有含水层和土壤层的浅层地下水模型, 并分析了泄漏率和地质条件的敏感性。结果表明, 当泄漏的CO2以点源进入地层时, CO2羽的分布形态通常为蘑菇形。由于CO2和土壤气体之间的压力, 浓度和密度差异的综合影响, 最大泄漏率发生在土壤表面。气相CO2的质量分数在表面泄漏点附近约为0.38–0.48, 泄漏的CO2沿土壤包气带底部横向移动。如观测到的CO2泄漏率从0.0002增加到0.02 kg/s, CO2泄漏率会显著影响压力的积聚。除黄土梁地外, 还研究了山谷阶地CO2泄漏的迁移过程。结果表明, 山谷阶地泄漏中心区的CO2浓度与黄土梁区的CO2浓度差异不大。此外, 由于地层成分和厚度的差异, 山谷阶地的表面泄漏范围比黄土梁区的小得多。非均质性对泄漏的影响有限。

Resumo

Em um esforço para detectar e quantificar o potencial vazamento de CO2 em sítios de armazenamento geológico, este trabalho investiga o processo de migração de CO2 vazado em subsuperfície rasa associado ao projeto de sequestro de CO2 em Shaanxi, China. Um modelo de subsuperfície rasa, incluindo aquífero e camadas de solo, foi estabelecido e as sensibilidades na taxa de vazamento e condições geológicas foram analisadas. Os resultados mostram que a morfologia da distribuição da pluma de CO2 geralmente tem a forma de cogumelo quando o CO2 vazado entra na formação como uma fonte pontual. O vazamento máximo ocorre na superfície do solo devido aos efeitos abrangentes das diferenças de pressão, concentração e densidade entre o CO2 e o gás no solo. A fração mássica de CO2 , em gás, é de aproximadamente 0.38-0.48 perto do ponto de vazamento da superfície, e o CO2 vazado se move lateralmente ao longo do fundo da zona vadosa do solo. A taxa de vazamento de CO2 afeta significativamente o aumento da pressão, conforme observado para um aumento na taxa de vazamento de CO2 de 0.0002 para 0.02 kg/s. Além da área de feixe de loesse, também foi estudado o processo de migração do vazamento de CO2 na área do terraço do vale. Os resultados mostram que a concentração de CO2 na área central do vazamento no terraço do vale não é muito diferente da concentração no feixe de loesse. Além disso, a faixa de vazamento de superfície no terraço do vale é muito menor do que a do feixe de loesse, devido às diferenças na composição e espessura da formação. A heterogeneidade tem efeito limitado no vazamento.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Basirat F, Niemi A, Perroud H, Lofi J, Denchik N, Lods G, Pezard P, Shama P, Fagerlund F (2013) Modeling gas transport in the shallow subsurface in Maguelone field experiment. Energy Procedia 40:337–345

    Article  Google Scholar 

  • Battistelli A (2008) Modeling multiphase organic spills in coastal sites with TMVOC V. 2.0. Vadose Zone J 7(1):316–324

    Article  Google Scholar 

  • Birkholzer JT, Zhou Q, Tsang CF (2009) Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int J Greenh Gas Control 3(2):181–194

    Article  Google Scholar 

  • Cohen G, Loisy C, Laveuf C, Le Roux O, Delaplace P, Magnier C, Rouchin V, Garcia B, Cerepi A (2013) The CO2-vadose project: experimental study and modelling of CO2 induced leakage and tracers associated in the carbonate vadose zone. Int J Greenh Gas Control 14:128–140

    Article  Google Scholar 

  • De Lary L, Loschetter A, Bouc O, Rohmer J, Oldenburg C (2012) Assessing health impacts of CO2 leakage from a geological storage site into buildings: role of attenuation in the unsaturated zone and building foundation. Int J Greenh Gas Control 9:322–333

    Article  Google Scholar 

  • Deng H, Stauffer PH, Dai Z, Jiao Z, Surdam RC (2012) Simulation of industrial-scale CO2 storage: multi-scale heterogeneity and its impacts on storage capacity, injectivity and leakage. Int J Greenh Gas Control 10:397–418

    Article  Google Scholar 

  • Derakhshan-Nejad Z, Sun J, Yun ST, Lee G (2019) Potential CO2 intrusion in near-surface environments: a review of current research approaches to geochemical processes. Environ Geochem Health 41(5):2339–2364

  • Feitz A, Jenkins C, Schacht U, McGrath A, Berko H, Schroder I, Kuske T, Curnow S, George S, Heath C, Zegelin S, Zhang H, Sirault X, Jimenez-Berni J (2014) An assessment of near surface CO2 leakage detection techniques under Australian conditions. Energy Procedia 63:3891–3906

  • Iglesias RS, Romio C, Melo CL, Musse APS, do Rosário F, Oldenburg CM (2019) Modeling CO2 flow in support of a shallow subsurface controlled leakage field test. Greenh Gases: Sci Technol 9(5):1027–1042

    Article  Google Scholar 

  • IPCC—Intergovernmental Panel on Climate Change (2005) Special report on carbon dioxide capture and storage, chap 5. In: Metz B, Davidson O, de Coninck HC, Loos M, Meyer LA (eds) Cambridge University Press, Cambridge, UK, pp 195–276

    Google Scholar 

  • Globle CCS Institute (2018) The global status of CCS:2018. Australia. https://www.globalccsinstitute.com/resources/global-status-report/. Accessed November 2018

  • Hong B, Li XA, Wang L, Li LC (2019) Temporal variation in the permeability anisotropy behavior of the Malan loess in northern Shaanxi Province, China: an experimental study. Environ Earth Sci 78(15):447

    Article  Google Scholar 

  • Jones D, Barkwith A, Hannis S, Lister T, Gal F, Graziani S, Beaubien SE, Widory D (2014) Monitoring of near surface gas seepage from a shallow injection experiment at the CO2 Field Lab, Norway. Int J Greenh Gas Control 28:300–317

    Article  Google Scholar 

  • Kim HJ, Han SH, Kim S, Yun ST, Jun SC, Oh YY, Son Y (2018) Characterizing the spatial distribution of CO2 leakage from the shallow CO2 release experiment in South Korea. Int J Greenh Gas Control 72:152–162

    Article  Google Scholar 

  • Leverett M (1941) Capillary behavior in porous solids. Trans AIME 142(01):152–169

    Article  Google Scholar 

  • Lewicki JL, Oldenburg CM, Dobeck L, Spangler L (2007) Surface CO2 leakage during two shallow subsurface CO2 releases. Geophys Res Lett 34(24). https://doi.org/10.1029/2007GL032047

  • Oak MJ, Baker LE, Thomas DC (1990) Three-phase relative permeability of Berea sandstone. J Pet Technol 42(08):1–054

    Article  Google Scholar 

  • Pak NM, Rempillo O, Norman AL, Layzell DB (2016) Early atmospheric detection of carbon dioxide from carbon capture and storage sites. J Air Waste Manage Assoc 66(8):739–747

    Article  Google Scholar 

  • Parker J, Lenhard R, Kuppusamy T (1987) A parametric model for constitutive properties governing multiphase flow in porous media. Water Resour Res 23(4):618–624

    Article  Google Scholar 

  • Phoon KK, Huang SP, Quek ST (2002) Implementation of Karhunen–Loeve expansion for simulation using a wavelet-Galerkin scheme. Probabil Eng Mech 17(3):293–303

    Article  Google Scholar 

  • Pruess K, Battistelli A (2002) TMVOC, a numerical simulator for three-phase non-isothermal flows of multicomponent hydrocarbon mixtures in saturated-unsaturated heterogeneous media. Lawrence Berkeley National Lab., Berkeley, CA. https://www.osti.gov/servlets/purl/891344. Accessed May 2020

  • Pruess K, Oldenburg CM, Moridis GJ (1999) TOUGH2 user’s guide version 2 (no. LBNL-43134). Lawrence Berkeley National Lab., Berkeley, CA

  • Rillard J, Loisy C, Le Roux O, Cerepi A, Garcia B, Noirez S, Rouchon V, Delaplace P, Willequet O, Bertrand C (2015) The DEMO-CO2 project: a vadose zone CO2 and tracer leakage field experiment. Int J Greenh Gas Control 39:302–317

    Article  Google Scholar 

  • Rohmer J, de Latour LdL, Blanc C, Guérin V, Coftier A, Hube D, Audigane P, Oldenburg C (2010) Managing the risk in the vadose zone associated with the leakage of CO2 from a deep geological storage. Paper presented at the CONSOIL 2010-11th International UFZ-Deltares/TNO Conference on Management of Soil, Groundwater and Sediment, Salzburg, Austria, September 2010

  • Romanak KD, Bennett PC, Yang C, Hovorka SD (2012) Process-based approach to CO2 leakage detection by vadose zone gas monitoring at geologic CO2 storage sites. Geophys Res Lett 39(15):15405

  • Rütters H, Möller I, May F, Flornes K, Hladik V, Arvanitis A, Gülec N, Bakiler C, Dudu A, Kucharic L, Juhojuntti N, Shogenova A, Georgiev G (2013) State-of-the-art of monitoring methods to evaluate storage site performance. CGS Europe Key Rep 1:109

    Google Scholar 

  • Spangler LH, Dobeck LM, Repasky KS, Nehrir AR, Humphries SD, Barr JL, Keith CJ, Shaw JA, Rouse JH, Cunningham AB, Benson SM, Oldenburg CM, Lewicki JL, Wells AW, Diehl JR, Strazisar BR, Fessenden JE, Rahn TA, Amonette JE, Barr JL, Pickles WL, Jacobson JD, Silver EA, Male EJ, Rauch HW, Gullickson KS, Trautz R, Kharaka Y, Birkholzer J, Wielopolski L (2010) A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models. Environ Earth Sci 60(2):227–239

    Article  Google Scholar 

  • Stone H (1970) Probability model for estimating three-phase relative permeability. J Pet Technol 22(02):214–218

    Article  Google Scholar 

  • Tarakki N, Risk D, Spafford L, Fougere C (2018) A meta-analysis of the surface soil gas measurement monitoring and verification (MMV) program at the Aquistore project. Int J Greenh Gas Control 75:189–197

    Article  Google Scholar 

  • UNFCCC (2015) Adoption of the Paris Agreement FCCC/CP/2015/L. 9/Rev. 1. UNFCCC, Bonn, Germany

  • Wang G, Li T, Xing X, Zou Y (2015) Research on loess flow-slides induced by rainfall in July 2013 in Yan’an, NW China. Environ Earth Sci 73(12):7933–7944

    Article  Google Scholar 

  • Wang J, Hu L, Pan L, Zhang K (2018) Numerical studies of CO 2 and brine leakage into a shallow aquifer through an open wellbore. Hydrogeol J 26(2):495–509

    Article  Google Scholar 

  • Wiegers C, Schäfer D, Köber R, Dahmke A (2012) Expansion and migration of gaseous and dissolved CO2 in a site specific shallow aquifer. Paper presented at the Proceedings of the TOUGH Symposium, Berkeley, CA, September 2012

  • Xiao T, McPherson B, Pan F, Esser R, Jia W, Bordelon A, Bacon D (2016) Potential chemical impacts of CO2 leakage on underground source of drinking water assessed by quantitative risk analysis. Int J Greenh Gas Control 50:305–316

    Article  Google Scholar 

  • Yang C, Romanak KD, Reedy RC, Hovorka SD, Trevino RH (2017) Soil gas dynamics monitoring at a CO 2-EOR site for leakage detection. Geomech Geophys Geo-Energy Geo-Resour 3(3):351–364

    Article  Google Scholar 

  • Zheng L, Apps JA, Zhang Y, Xu T, Birkholzer JT (2009) Reactive transport simulations to study groundwater quality changes in response to CO2 leakage from deep geological storage. Energy Procedia 1(1):1887–1894

    Article  Google Scholar 

  • Zhuang J, Peng J, Wang G, Iqbal J, Wang Y, Li W, Xu Q, Zhu X (2017) Prediction of rainfall-induced shallow landslides in the Loess Plateau, Yan’an, China, using the TRIGRS model. Earth Surf Process Landf 42(6):915–927

    Article  Google Scholar 

Download references

Funding

The research was supported by the National Key Research and Development Program of China (Grant No. 2018YFB0605504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fukang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yang, F., Chong, S. et al. Numerical simulation of CO2 leakage in a shallow subsurface layer from a CO2 geological storage site. Hydrogeol J 28, 2439–2455 (2020). https://doi.org/10.1007/s10040-020-02181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02181-3

Keywords

Navigation