Skip to main content
Log in

Identification of piecewise constant Robin coefficient for the Stokes problem using the Levenberg–Marquardt method

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this work, we prove the quadratic convergence of the Levenberg–Marquardt method for the inverse problem of identifying a Robin coefficient for the Stokes system, where we suppose that this parameter is piecewise constant on some non-accessible part of the boundary and under the assumption that on this part, the velocity of a given reference solution stays far from zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baffico L, Grandmont C, Maury B (2010) Multiscale modeling of the respiratory tract. Math Models Methods Appl Sci 20(1):59–93

    Article  MathSciNet  MATH  Google Scholar 

  • Ben Abda A, Khayat F (2016) Reconstruction of missing boundary conditions from partially overspecified data: the Stokes system. ARIMA J 23:79–100

    MathSciNet  Google Scholar 

  • Bertsekas DP (1995) Nonlinear programming. Athena Scientific, Belmont

    MATH  Google Scholar 

  • Boulakia M, Egloffe AC, Grandmont C (2013) Stability estimates for a Robin coefficient in the two-dimensional Stokes system. Math Control Relat Field 3:21–49

    Article  MathSciNet  MATH  Google Scholar 

  • Boulakia M, Egloffe AC, Grandmont C (2013) Stability estimates for the unique continuation property of the Stokes system and for an inverse boundary coefficient problem. Inverse Probl 29:115001

    Article  MathSciNet  MATH  Google Scholar 

  • Burger M, Osher S (2005) A survey on level set methods for inverse problems and optimal design. Eur J Appl Math 16:263–301

    Article  MathSciNet  MATH  Google Scholar 

  • Chaabane S, Elhechmi C, Jaoua M (2004) A stable recovery method for the Robin inverse problem. Math Comput Simul 66:367–383

    Article  MathSciNet  MATH  Google Scholar 

  • Chaabane S, Ferchichi J, Kunisch K (2004) Differentiability properties of the L1-tracking functional and application to the Robin inverse problem. Inverse Probl 20:1083–1097

    Article  MATH  Google Scholar 

  • Chaabane S, Feki I, Mars N (2012) Numerical reconstruction of a piecewise constant Robin parameter in the two- or three-dimensional case. Inverse Probl. https://doi.org/10.1088/0266-5611/28/6/065016

    Article  MathSciNet  MATH  Google Scholar 

  • Daijun J, Talaat TA (2017) Simultaneous identification of Robin coefficient and heat flux in an elliptic system. Int J Comput Math 94(1):185–196

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies I, Defrise M, DeMol C (2004) An iterative thresholding algorithm for linear inverse problems. Commun Pure Appl Math 57(1):1413–1457

    Article  MathSciNet  MATH  Google Scholar 

  • Duvaut G, Lions JL (1976) Inequalities in mechanics and physics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Egger H (2007) Fast fully iterative Newton-type methods for inverse problems. J Inverse Ill Posed Probl 15:257–275

    Article  MathSciNet  MATH  Google Scholar 

  • Egloffe AC (2012) Etude de quelques problèmes inverses pour le système de Stokes. Application aux poumons. PhD thesis, Paris VI

  • Egloffe AC (2013a) Lipschitz stability estimate in the inverse Robin problem for the Stokes system. CRAS Ser. I 351:527–531

    MathSciNet  MATH  Google Scholar 

  • Egloffe AC (2013b) Lipschitz stability estimate in the inverse Robin problem for the Stokes system. INRIA Res Rep RR 8222

  • Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Facchinei F, Kanzow C (1997) A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems. Math Program 76:493–512

    MathSciNet  MATH  Google Scholar 

  • Fan JY, Yuan YX (2005) On the quadratic convergence of the Levenberg–Marquardt method without nonsingularity assumption. Computing 74:23–39

    Article  MathSciNet  MATH  Google Scholar 

  • Fang W, Lu M (2004) A fast collocation method for an inverse boundary value problem. Int J Numer Methods Eng 59:1563–1585

    Article  MathSciNet  MATH  Google Scholar 

  • Fasino D, Inglese G (1999) An inverse Robin problem for Laplace’s equation: theoretical results and numerical methods. Inverse Probl 15:41–48

    Article  MathSciNet  MATH  Google Scholar 

  • Fernandez MA, Gerbeau JF, Martin V (2008) Numerical simulation of blood flows through a porous interface. ESAIM Math Model Numer Anal 42:961–990

    Article  MathSciNet  MATH  Google Scholar 

  • Fu H, Liu H, Han B, Yang Y, Hu Y (2017) A proximal iteratively regularized Gauss–Newton method for nonlinear inverse problems. J Inverse Ill Posed Probl 25:341–356

    Article  MathSciNet  MATH  Google Scholar 

  • Gavin HP (2013) The Levenberg–Marquardt method for nonlinear least squares curve-fitting problems. Department of Civil and Environmental Engineering, Duke University, Durham

    Google Scholar 

  • Hanke M (1997) A regularization Levenberg–Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Probl 13:79–95

    Article  MATH  Google Scholar 

  • Jin BT (2007) Conjugate gradient method for the Robin inverse problem associated with the Laplace equation. Int J Numer Methods Eng 71:433–453

    Article  MathSciNet  MATH  Google Scholar 

  • Jin B (2010) Numerical estimation of the Robin coefficient in a stationary diffusion equation. IMA J Numer Anal 30:677–701

    Article  MathSciNet  MATH  Google Scholar 

  • Kaltenbacher B, Neubauer A, Scherzer O (2008) Iterative regularization methods for nonlinear ill-posed problems. Walter de Gruyter, Berlin

    Book  MATH  Google Scholar 

  • Lange K, Hunter DR, Yang I (2000) Optimization transfer algorithms using surrogate objective functions. J Comput Graph Stat 9:1–59

    Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441

    Article  MathSciNet  MATH  Google Scholar 

  • Maury B (2014) The resistance of the respiratory system, from top to bottom. ESAIM Proc Surv 47:75–96

    Article  MathSciNet  MATH  Google Scholar 

  • Petra N, Zhu H, Stadler G, Hughes TJR, Ghattas O (2012) An inexact Gauss–Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model. J Glaciol 58:889–903

    Article  Google Scholar 

  • Pironneau O, Hecht F, Hyaric A, Ohtsuka K (2006) FreeFEM. http://www.freefem.org

  • Pradeep D, Rajan MP (2016) A simplified Gauss–Newton iterative scheme with an a posteriori parameter choice rule for solving nonlinear ill-posed problems. Int J Appl Comput Math 2:97–112

    Article  MathSciNet  MATH  Google Scholar 

  • Quarteroni A, Veneziani A (2003) Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations. Multiscale Model Simul 1:173–95

    Article  MathSciNet  MATH  Google Scholar 

  • Talaat A, Elsheikh AH, Elazab A, Sharshir SW, Ehab S, Daijun J (2017a) Simultaneous reconstruction of the time-dependent Robin coefficient and heat flux in heat conduction problems. Inverse Probl Sci Eng 26(9):1231–1248

    MathSciNet  MATH  Google Scholar 

  • Talaat A, Xiaomao D, Rongliang C (2017b) A new method for simultaneously reconstructing the space-time dependent Robin coefficient and heat flux in a parabolic system. Int J Numer Anal Model 14(6):893–915

    MathSciNet  MATH  Google Scholar 

  • Yamashita N, Fukushima M (2000) The proximal point algorithm with genuine superlinear convergence for the monotone complementarity problem. SIAM J Optim 11(2):364–379

    Article  MathSciNet  MATH  Google Scholar 

  • Yamashita N, Fukushima M (2001) On the rate of convergence of the Levenberg–Marquardt method. Computing (Suppl. 15):237–249

  • Zou J, Jiang D, Feng H (2001) Quadratic convergence of Levenberg–Marquardt method for elliptic and parabolic inverse Robin problems. ESAIM: M2AN.52(3):1085–1107

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faten Khayat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khayat, F. Identification of piecewise constant Robin coefficient for the Stokes problem using the Levenberg–Marquardt method. Comp. Appl. Math. 39, 185 (2020). https://doi.org/10.1007/s40314-020-01199-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01199-3

Keywords

Mathematics Subject Classification

Navigation