Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants

Abstract

In eukaryotes, genes are transcribed by RNA polymerase-II (Pol-II) and introns are removed by the spliceosome largely cotranscriptionally1,2,3; analysis using long-read sequencing revealed that splicing occurs immediately after Pol-II passes introns in yeast4,5. Here, we developed a Nanopore-based method to profile chromatin-bound RNA that enables the simultaneous detection of splicing status, Pol-II position and polyadenylation at the genome-wide scale in Arabidopsis. We found that more than half of the introns remain unspliced after Pol-II transcribes 1 kb past the 3′ splice site, which is much slower than the rate of splicing reported in yeast4,5. Many of the full-length chromatin-bound RNA molecules are polyadenylated, yet still contain unspliced introns at specific positions. These introns are nearly absent in the cytoplasm and are resistant to nonsense-mediated decay, suggesting that they are post-transcriptionally spliced before the transcripts are released into the cytoplasm; we therefore termed these introns post-transcriptionally spliced introns (pts introns). Analysis of around 6,500 public RNA-sequencing libraries found that the splicing of pts introns requires the function of splicing-related proteins such as PRMT5 and SKIP, and is also influenced by various environmental signals. The majority of the intron retention events in Arabidopsis are at pts introns, suggesting that chromatin-tethered post-transcriptional splicing is a major contributor to the widespread intron retention that is observed in plants, and could be a mechanism to produce fully spliced functional mRNAs for rapid response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Full-length nascent RNA-seq.
Fig. 2: Splicing can occur cotranscriptionally in Arabidopsis and is coupled in multi-intron genes.
Fig. 3: High accumulation of polyadenylated transcripts with unspliced introns at specific positions on chromatin.
Fig. 4: The splicing of pts introns was regulated by splicing-related factors and various environmental signals.

Similar content being viewed by others

Data availability

All data generated in this study were deposited at NCBI under the accession number PRJNA591665.

Code availability

The code used to perform Poly(A) tail analysis is available at https://github.com/zhailab/polyACaller.

References

  1. Merkhofer, E. C., Hu, P. & Johnson, T. L. Introduction to cotranscriptional RNA splicing. Methods Mol. Biol. 1126, 83–96 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Naftelberg, S., Schor, I. E., Ast, G. & Kornblihtt, A. R. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu. Rev. Biochem. 84, 165–198 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Wissink, E. M., Vihervaara, A., Tippens, N. D. & Lis, J. T. Nascent RNA analyses: tracking transcription and its regulation. Nat. Rev. Genet. 165, 535–519 (2019).

    Google Scholar 

  4. Oesterreich, F. C. et al. Splicing of nascent RNA coincides with intron exit from RNA polymerase II. Cell 165, 372–381 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Herzel, L., Straube, K. & Neugebauer, K. M. Long-read sequencing of nascent RNA reveals coupling among RNA processing events. Genome Res. 28, 1008–1019 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khodor, Y. L. et al. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Gene Dev. 25, 2502–2512 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bentley, D. L. Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet. 15, 163–175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoskins, A. A. et al. Ordered and dynamic assembly of single spliceosomes. Science 331, 1289–1295 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wahl, M. C., Will, C. L. & Lührmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, W. et al. Transcriptome-wide interrogation of the functional intronome by spliceosome profiling. Cell 173, 1031–1044 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burke, J. E. et al. Spliceosome profiling visualizes operations of a dynamic RNP at nucleotide resolution. Cell 173, 1014–1030 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mayer, A. et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 161, 541–554 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Churchman, L. S. & Weissman, J. S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Nojima, T. et al. Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161, 526–540 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hetzel, J., Duttke, S. H., Benner, C. & Chory, J. Nascent RNA sequencing reveals distinct features in plant transcription. Proc. Natl Acad. Sci. USA 113, 12316–12321 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu, D. et al. The features and regulation of co-transcriptional splicing in Arabidopsis. Mol. Plant 13, 278–294 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Li, S. et al. Global co-transcriptional splicing in Arabidopsis and the correlation with splicing regulation in mature RNAs. Mol. Plant 13, 266–277 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, Z. et al. Quantitative regulation of FLC via coordinated transcriptional initiation and elongation. Proc. Natl Acad. Sci. USA 113, 218–223 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Zhu, J., Liu, M., Liu, X. & Dong, Z. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis. Nat. Plants 4, 1112–1123 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Bhatt, D. M. et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150, 279–290 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boutz, P. L., Bhutkar, A. & Sharp, P. A. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Gene Dev. 29, 63–80 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Drexler, H. L., Choquet, K. & Churchman, L. S. Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol. Cell 77, 985–998 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Kalyna, M. et al. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res. 40, 2454–2469 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Deng, X. et al. Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. Proc. Natl Acad. Sci. USA 107, 19114–19119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deng, X. et al. Recruitment of the NineTeen complex to the activated spliceosome requires AtPRMT5. Proc. Natl Acad. Sci. USA 113, 5447–5452 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, X. et al. SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis. Plant Cell 24, 3278–3295 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanchez, S. E. et al. A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature 468, 112–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Gaidatzis, D., Burger, L., Florescu, M. & Stadler, M. B. Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. Nat. Biotechnol. 33, 722–729 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. James, A. B. et al. Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 24, 961–981 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gahura, O. et al. Prp45 affects Prp22 partition in spliceosomal complexes and splicing efficiency of non-consensus substrates. J. Cell. Biochem. 106, 139–151 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Siatecka, M., Reyes, J. L. & Konarska, M. M. Functional interactions of Prp8 with both splice sites at the spliceosomal catalytic center. Gene Dev. 13, 1983–1993 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boothby, T. C., Zipper, R. S., van der Weele, C. M. & Wolniak, S. M. Removal of retained introns regulates translation in the rapidly developing gametophyte of Marsilea vestita. Dev. Cell 24, 517–529 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Naro, C. et al. An orchestrated intron retention program in meiosis controls timely usage of transcripts during germ cell differentiation. Dev. Cell 41, 82–93 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mauger, O., Lemoine, F. & Scheiffele, P. Targeted intron retention and excision for rapid gene regulation in response to neuronal activity. Neuron 92, 1266–1278 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Brody, Y. et al. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol. 9, e1000573 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Göhring, J., Jacak, J. & Barta, A. Imaging of endogenous messenger RNA splice variants in living cells reveals nuclear retention of transcripts inaccessible to nonsense-mediated decay in Arabidopsis. Plant Cell 26, 754–764 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yeom, K. H. & Damianov, A. Methods for extraction of RNA, proteins, or protein complexes from subcellular compartments of eukaryotic cells. Methods Mol. Biol. 1648, 155–167 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Lamesch, P. et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40, D1202–D1210 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Cheng, C. Y. et al. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 89, 789–804 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Braunschweig, U. et al. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res. 24, 1774–1786 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Middleton, R. et al. IRFinder: assessing the impact of intron retention on mammalian gene expression. Genome Biol. 18, 51 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Article  CAS  Google Scholar 

  46. Zhu, S. et al. PlantAPAdb: a comprehensive database for alternative polyadenylation sites in plants. Plant Physiol. 182, 228–242 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K.-H. Yeom and Z. Wu for advice on chromatin-bound RNA isolation. The group of J.Z. is supported by the National Key R&D Program of China Grant (2019YFA0903903); an NSFC to J.Z. (grant no. 31871234); the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2016ZT06S172); and the Shenzhen Sci-Tech Fund (KYTDPT20181011104005). J.J. is supported by China Postdoctoral Science Foundation (2018M640787). The group of X.C. is supported by the National Natural Science Foundation of China (grant nos. 31788103 and 91540203, to X.C.); the Chinese Academy of Sciences (Strategic Priority Research Program, XDB27030201 and QYZDY-SSW-SMC022, to X.C.); the Youth Innovation Promotion Association of CAS (grant no. 2018131, to X.D.); and the State Key Laboratory of Plant Genomics.

Author information

Authors and Affiliations

Authors

Contributions

J.J., Y.L., D.L., X.J. and X.D. performed the experiments. J.J., Y.L., H.Z., Z.Li, Z.Liu and Y.Z. analysed the data. R.X., X.C. and J.Z. oversaw the study. J.J., Y.L. and J.Z. wrote the manuscript, and all of the authors revised the manuscript.

Corresponding author

Correspondence to Jixian Zhai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and the unprocessed western blots for Supplementary Fig. 1.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Long, Y., Zhang, H. et al. Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants. Nat. Plants 6, 780–788 (2020). https://doi.org/10.1038/s41477-020-0688-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-020-0688-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing