Skip to main content
Log in

Features of the AMR Effect in Magnetic Strips with Perpendicular Anisotropy

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A theoretical model is proposed for structures of collective micromagnetic spin in magnetoresistive FeNiCo nanostrips with perpendicular anisotropy. Atypical dependences of the magnetoresistance on the magnitude of the external field obtained experimentally indicate there is a complex domain structure in each sample. The curves of the AMR effect, calculated in accordance with this model, are in quantitative agreement with the experimental results for the above samples, while calculations using the specialized OOMMF package show only qualitative similarities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bhatti, S., Sbiaa, R., Hirohata, A., et al., Mater. Today, 2017, vol. 20, no. 9, p. 530.

    Article  Google Scholar 

  2. Jiang, W., Chen, G., Liu, K., et al., Phys. Rep., 2017, vol. 704, p. 1.

    Article  ADS  MathSciNet  Google Scholar 

  3. Wang, C., Su, W., Hu, Z., et al., IEEE Trans. Magn., 2018, vol. 54, no. 11, 2301103.

    Google Scholar 

  4. Kateb, M., Jacobsen, E., and Ingvarsson, S., J. Phys. D, 2018, vol. 52, no. 7, 075002.

    Article  ADS  Google Scholar 

  5. Dubovik, M.N. and Filippov, B.N., Phys. Met. Metallogr., 2017, vol. 118, no. 11, p. 1031.

    Article  ADS  Google Scholar 

  6. Fert, A., Phys.—Usp., 2008, vol. 51, no. 12, p. 1336.

    Google Scholar 

  7. Slonczewski, J.C., Phys. Rev. B: Condens. Matter Mater. Phys., 1989, vol. 39, no. 10, p. 6995.

    Article  ADS  Google Scholar 

  8. McGuire, T.R. and Potter, R.I., IEEE Trans. Magn., 1975, vol. 11, no. 4, p. 1018.

    Article  ADS  Google Scholar 

  9. OOMMF Project at ITL/NIST. https:// math.nist.gov/oommf.

  10. Urbaniak, M., Stobiecki, F., Szymański, B., et al., J. Appl. Phys., 2007, vol. 101, no. 1, 013905.

    Article  ADS  Google Scholar 

  11. Antonov, L.I., Lukasheva, E.V., Mironova, G.A., and Skachkov, D.G., Phys. Met. Metallogr., 2000, vol. 90, no. 3, p. 213.

    Google Scholar 

  12. Kittel, C., Rev. Modern Phys., 1949, vol. 21, no. 4, p. 541.

    Article  ADS  Google Scholar 

  13. Landau, L. and Lifshits, E., Phys. Z., 1935, vol. 8, p. 153.

    Google Scholar 

  14. Shevtsov, V.S., Polyakov, O.P., Amelichev, V.V., et al., Moscow Univ. Phys. Bull. (Engl. Transl.), 2019, vol. 74, no. 5, p. 459.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the BASIS Foundation for the Development of Theoretical Physics and Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Shevtsov.

Additional information

Translated by A. Ivanov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevtsov, V.S., Polyakov, O.P., Amelichev, V.V. et al. Features of the AMR Effect in Magnetic Strips with Perpendicular Anisotropy. Bull. Russ. Acad. Sci. Phys. 84, 599–601 (2020). https://doi.org/10.3103/S1062873820050305

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873820050305

Navigation