Skip to main content
Log in

Radio-Absorbing Composites for Microwave Devices

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Ferrite-based composites can largely attenuate the energy of incident electromagnetic radiation by reducing the reflection at the interface between the composites and free space. The magnetic and dielectric properties of composites consisting of ferrite fillers and epoxy resin are investigated along with the parameters of microwave absorption. The dependences of the permeability and permittivity in the 1 to 3 GHz range of frequencies are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Lagarkov, A.N. and Rozanov, K.N., J. Magn. Magn. Mater., 2009, vol. 321, no. 14, p. 2082.

    Article  ADS  Google Scholar 

  2. Cruickshank, D., Microwave Materials for Wireless Applications, Norwood, MA: Artech House, 2011.

    Google Scholar 

  3. Helszajn, J. and James, D., IEEE Trans. Microwave Theory Tech., 1978, vol. 26, p. 95.

    Article  ADS  Google Scholar 

  4. Linkhart, D., Microwave Circulator Design, Norwood, MA: Artech House, 2014.

    Google Scholar 

  5. Skyworks. https://www.skyworksinc.com.

  6. Trukhanov, S.V., Trukhanov, A.V., Vasiliev, A.N., et al., J. Exp. Theor. Phys., 2010, vol. 111, no. 2, p. 209.

    Article  ADS  Google Scholar 

  7. Hua, Z.H., Li, S.Z., Han, Z.D., et al., Mater. Sci. Eng., A, 2007, vol. 448, p. 326.

    Article  Google Scholar 

  8. Smit, J. and Wijn, H.P.J., Ferrites, Eindhoven: Philips, 1959.

    Google Scholar 

  9. Levin, B.E., Tret’yakov, Yu.D., and Letyuk, L.M., Fiziko-khimicheskie osnovy polucheniya, svoistva i primenenie ferritov (Physical and Chemical Principles of Production, Properties, and Use of Ferrites), Moscow: Metallurgiya, 1979.

  10. Labeyrie, M., Mage, J.C., and Simonet, W., IEEE. Trans. Magn., 1984, vol. 20, no. 5, p. 1224.

    Article  ADS  Google Scholar 

  11. Chen, D., Liu, Y., Li, Y., et al., J. Magn. Magn. Mater., 2013, vols. 337–338, p. 65.

    Article  ADS  Google Scholar 

  12. Cheparin, V.P. and Cherkasov, A.P., Neorg. Mater., 1972, no. 8, p. 196.

  13. Serebryannikov, S.V., Cherkasov, A.P., Serebryannikov, S.S., and Konshin, P.I., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 8, p. 928.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Serebryannikov.

Additional information

Translated by E. Bondareva

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serebryannikov, S.V., Cherkasov, A.P., Serebryannikov, S.S. et al. Radio-Absorbing Composites for Microwave Devices. Bull. Russ. Acad. Sci. Phys. 84, 609–612 (2020). https://doi.org/10.3103/S1062873820050275

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873820050275

Navigation