Skip to main content
Log in

pH-Dependent Regulation of Electron and Proton Transport in Chloroplasts In Situ and In Silico

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The analysis of electron and proton transport in chloroplasts of higher plants has been carried out on the basis of a mathematical model that takes into account the pH-dependent regulation of electron transport and the operation of the ATP synthase. Numerical experiments aimed at simulation of these processes under pseudocyclic electron transport (water–water cycle) have shown good agreement with experimental data on the kinetics of electron transfer to photosystem 1 (PS1) in class B chloroplasts in metabolic states corresponding to high (state 3) and low (state 4) ATP synthase activity. The simulation of electron transport processes that took into account the Calvin–Benson cycle (CBC), cyclic electron transport around PS1, pH-dependent heat dissipation of energy in photosystem 2 (PS2), and nonphotochemical quenching (NPQ) made it possible to estimate the contribution of these factors to the kinetics of induction phenomena in chloroplasts in situ. It has been shown that the multiphase kinetics of the photooxidation of P700 (a primary electron donor in PS1) reflects the redistribution of electron flows between cyclic and non-cyclic electron transfer pathways, caused by the activation of CBC due to the alkalization of the stroma, as well as the change of the limiting stage in the electron transport chain, induced by a decrease in the intrathylakoid pH (pHin). The electron flux between PS2 and PS1 decelerates with pHin decrease, which may be caused by the reduced rate of plastoquinol oxidation and attenuated activity of PS2 due to NPQ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Albertsson P.-A. 2001. A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci.6, 349–354.

    Article  CAS  PubMed  Google Scholar 

  2. Staehelin L.A. 2003. Chloroplast structure: From chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth. Res. 76, 185–196.

    Article  CAS  PubMed  Google Scholar 

  3. Dekker J.P., Boekema E.J. 2005. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta. 1706, 12–39.

    Article  CAS  PubMed  Google Scholar 

  4. Blankenship R.E. 2002. Molecular mechanisms of photosynthesis. Malden, MA: Blackwell Science Inc.

    Book  Google Scholar 

  5. Nelson N., Yocum C.F. 2006. Structure and function of photosystems I and II. Annu. Rev. Plant. Biol.57, 521–565.

    Article  CAS  PubMed  Google Scholar 

  6. Mamedov M., Govindjee, Nadtochenko V., Semenov A. 2015. Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. Photosynth. Res.125, 51–63.

    Article  CAS  PubMed  Google Scholar 

  7. Edwards J., Walker D. 1986. Fotosintez C3 i C4 rasteniy: mehanizmi i regulatciya. (C3 and C4 photosynthesis in plants: Mechanisms and regulation). Moscow: Mir.

  8. Anderson J.M. 1982. Distribution of the cytochromes of spinach chloroplasts between the appressed membranes of grana stacks and stroma-exposed thylakoid regions. FEBS Lett. 138, 62–66.

    Article  CAS  Google Scholar 

  9. Dumas L., Chazaux M., Peltier G., Johnson X., Alric J. 2016. Cytochrome b6 f function and localization, phosphorylation state of thylakoid membrane proteins and consequences on cyclic electron flow. Photosynth. Res. 129, 307–320.

    Article  CAS  PubMed  Google Scholar 

  10. Horton P., Ruban A.V., Walters R.G. 1996. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655–684.

    Article  CAS  PubMed  Google Scholar 

  11. Kramer D.M., Avenson T.J., Edwards G.E. 2004. Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci.9, 349–357.

    Article  CAS  PubMed  Google Scholar 

  12. Rochaix J.-D. 2011. Regulation of photosynthetic electron transport. Biochim. Biophys. Acta.1807, 375–383.

    Article  CAS  PubMed  Google Scholar 

  13. Horton P. 2012. Optimization of light harvesting and photoprotection: Molecular mechanisms and physiological consequences. Philos. Trans. Roy. Soc. B.367, 3455–3465.

    Article  CAS  Google Scholar 

  14. Kono M., Terashima I. 2014. Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. J. Photochem. Photobiol. B.137, 89–99.

    Article  CAS  PubMed  Google Scholar 

  15. Tikhonov A.N. 2013. pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth. Res.116, 511–534.

    Article  CAS  PubMed  Google Scholar 

  16. Balsera M., Schurmann P., Buchanan B.B. 2016. Redox regulation in chloroplasts. In: Chloroplasts: Current research and future trends. Ed. Kirchhoff H. Norfolk: Caister Acad. Press, pp. 187–207.

    Google Scholar 

  17. Wada M., Kagawa T., Sato Y. 2003. Chloroplast movement. Annu. Rev. Plant Biol.54, 455–468.

    Article  CAS  PubMed  Google Scholar 

  18. Stiehl H.H., Witt H.T. 1969. Quantitative treatment of the function of plastoquinone in photosynthesis. Z. Naturforsch. B.24, 588–1598.

    Article  Google Scholar 

  19. Siggel U., Renger G., Stiehl H.H., Rumberg B. 1972. Evidence for electronic and ionic interaction between electron transport chains in chloroplasts. Biochim. Biophys. Acta.256, 328–335

    Article  CAS  PubMed  Google Scholar 

  20. Kramer D.M., Sacksteder C.A., Cruz J.A. 1999. How acidic is the lumen? Photosynth. Res.60, 151–163.

    Article  CAS  Google Scholar 

  21. Tikhonov A.N. 2015. Induction events and short-term regulation of electron transport in chloroplasts: An overview. Photosynth. Res. 125, 65–94.

    Article  CAS  PubMed  Google Scholar 

  22. Tikhonov A.N. 2018. The cytochrome b6f complex: Biophysical aspects of its functioning in chloroplasts. In: Membrane protein complexes: Structure and function, subcellular biochemistry. Eds Harris J.R., Boekema E.J. Singapore: Springer Nature, 87, 287–328.

  23. Vershubskii A.V., Priklonsky V. I., Tikhonov A. N. 2001. Electron and proton transport in chloroplasts taking into account lateral heterogeneity of thylakoids. Mathematical model. Biofizika (Rus.). 46, 471–481.

    CAS  Google Scholar 

  24. Vershubskii A.V., Kuvykin I.V., Priklonsky V.I., Tikhonov A.N. 2011. Functional and topological aspects of pH-dependent regulation of electron and proton transport in chloroplasts in silico.Biosystems. 103, 164–179.

    Article  CAS  PubMed  Google Scholar 

  25. Vershubskii A.V., Tikhonov A. N. 2013. Electron transport and transmembrane proton transfer in photosynthetic systems of oxygenic type in silico.Biophysics. 58, 60–71.

  26. Tikhonov A.N., Vershubskii A.V. 2014. Computer modeling of electron and proton transport in chloroplasts. Biosystems.121, 1–21.

    Article  CAS  PubMed  Google Scholar 

  27. Vershubskii A.V., Mishanin V.I., Tikhonov A.N. 2014. Modeling of the photosynthetic electron transport regulation in cyanobacteria. Biochem. (Mosc.) Suppl. Series A: Membr. Cell Biol. 8, 262–278.

  28. Tikhonov A.N. 2016. Modeling electron and proton transport in chloroplasts. In: Chloroplasts. Current research and future trends. Ed. Kirchhoff H. Poole: Caister Acad. Press, pp. 101–134.

    Google Scholar 

  29. Vershubski A.V., Naviancev S.M., Tikhonov A.N. 2018. Modeling of electron and proton transport in chloroplast membranes with regard to thioredoxin-dependent activation of the Calvin–Benson cycle and ATP synthase. Biochem. (Mosc.), Suppl. Series A: Membr. Cell Biol. 12, 287–302.

  30. Rubin A., Riznichenko G. 2014. Mathematical biophysics. Series: Biological and Medical Physics, Biomedical Engineering, XV.

  31. Riznichenko G.Yu., Lebedeva G.V., Demin O.V., Belyaeva N.E., Rubin A.B. 2000. The levels of regulation of photosynthesis processes. Biofizika (Rus.). 45, 452–460.

    CAS  Google Scholar 

  32. Kovalenko I.B., Knyazeva O.S., Antal T.K., Ponomarev V.Y., Riznichenko G.Y., Rubin A.B. 2017. Multiparticle Brownian dynamics si mulation of experimental kinetics of cytochrome bf oxidation and photosystem I reduction by plastocyanin. Physiol. Plant.161, 88–96.

    Article  CAS  PubMed  Google Scholar 

  33. Vershubskii A.V., Trubitsin B.V., Priklonskii V.I., Tikhonov A.N. 2017. Lateral heterogeneity of the proton potential along the thylakoid membranes of chloroplasts. Biochim. Biophys. Acta.1859, 388–401.

    Article  CAS  Google Scholar 

  34. Vershubskii A.V., Priklonsky V.I., Tikhonov A.N. 2004. Mathematical modeling of electron and proton transport coupled with ATP synthesis in chloroplasts. Biophysics. 49, 52–65.

  35. Vershubsky A.V., Priklonsky V.I., Tikhonov A.N. 2004. Effects of diffusion and topological factors on the efficiency of energy coupling in chloroplasts with heterogeneous partitioning of protein complexes in thylakoids of grana and stroma. A mathematical model. Biochemistry (Moscow). 69, 1016–1024.

  36. Vershubskii A.V., Priklonsky V.I., Tikhonov A.N. 2007. The interaction of the photosynthetic and respiratory chain electron transport in cells of cyanobacteria. Mathematical model. Khimicheskaya fizika (Rus.). 26, 54–64.

  37. Kuvykin I.V., Vershubskii A.V., Ptushenko V.V., Tikhonov A.N. 2008. Oxygen as an alternative electron acceptor in the photosynthetic chain of electronic transport of C3 plants. Biochemistry (Moscow). 73, 1063–1075.

  38. Kuvykin I.V., Vershubsky A.V., Priklonsky V.I., Tikhonov A.N. 2009. Computer simulation study of pH-dependent regulation of electron transport in chloroplasts. Biophysics. 54, 455–464.

  39. Kuvykin I.V., Vershubsky A.V., Tikhonov A.N. 2009. Alternative pathways of photoinduced electron transport in chloroplasts. Russ. J. Phys. Chem. B. 3, 230–241.

  40. Heber U. 2002. Irrungen, wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth. Res. 73, 223–231.

    Article  CAS  PubMed  Google Scholar 

  41. Ort D.R., Baker N.R. 2002. A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr. Opp. Plant Biol. 5, 193–197.

    Article  CAS  Google Scholar 

  42. Cherepanov D.A., Milanowskii G.E., Petrov A.A., Tikhonov A.N., Semenov A.Y. 2017. Electron transfer at the acceptor site of photosystem I: Interaction with exogenous acceptors and molecular oxygen. Biokhimiya (Rus.). 82, 1593–1614.

    Google Scholar 

  43. Egorova E. A., Bukhov N. G. 2006. Mechanisms and functions of alternative electron transport pathways in chloroplast associated with photosystem I. Fisiologiya rasteniy (Rus.). 53, 645–657.

  44. Puthiyaveetil S., Kirchhoff H., Hohner R. 2016. Structural and functional dynamics of the thylakoid membrane system. In: Chloroplasts: Current research and future trends. Ed. Kirchhoff H. Norfolk: Caister Acad. Press, pp. 59–87.

    Google Scholar 

  45. Burrows P.A., Sazanov L.A., Svab Z., Maliga P., Nixon P.J. 1998. Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J.17, 868–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dubinskii A.Yu., Tikhonov A.N. 1997 Mathematical model of thylakoid as a distributed heterogeneous system of electron and proton transport. Biofizika (Rus.). 42, 644–661.

    Google Scholar 

  47. Tikhonov A.N. 2012. Energetic and regulatory role of proton potential in chloroplasts. Biochemistry (Moscow). 77, 956–974.

  48. Tikhonov A.N., Khomutov G.B., Ruuge E.K., Blumenfeld L.A. 1981. Electron transport control in chloroplasts. Effects of photosynthetic control monitored by the intrathylakoid pH. Biochim. Biophys. Acta.637, 321–333.

    Article  CAS  Google Scholar 

  49. Tikhonov A.N., Khomutov G.B., Ruuge E.K. 1984. Electron transport control in chloroplasts. Effects of magnesium ions on the electron flow between two photosystems. Photobiochem.Photobiophys. 8, 261–269.

    CAS  Google Scholar 

  50. Tikhonov A.N., Agafonov R.V., Grigor’ev I.A., Kirilyuk I.A., Ptushenko V.V., Trubitsin B.V. 2008. Spin-probes designed for measuring the intrathylakoid pH in chloroplasts. Biochim. Biophys. Acta.1777, 285–294.

    Article  CAS  PubMed  Google Scholar 

  51. Kuvykin I.V., Ptushenko V.V., Vershubskii A.V., Tikhonov A.N. 2011. Regulation of electron transport in C3 plant chloroplasts in situ and in silico. Short-term effects of atmospheric CO2 and O2. Biochimica et Biophysica Acta. 1807, 336–347.

  52. Oster G., Wang H. 2000. Reverse engineering a protein: The mechanochemistry of ATP synthase. Biochim. Biophys. Acta. 1458, 482–510.

    Article  CAS  PubMed  Google Scholar 

  53. Romanovsky Yu. M., Tikhonov A. N. 2010. Molecular energy converters of a living cell. Proton ATP synthase is a rotating molecular motor. Uspekhi fiz.nauk (Rus.). 180, 931–956.

  54. Dubinsky A.Yu., Tikhonov A.N. 1995. Mathematical modeling of photoinduced proton uptake by chloroplasts for various mechanisms of proton leakage through the thylakoid membrane. Biofizika (Rus.). 40, 365–371.

    CAS  Google Scholar 

  55. Boichenko V.A. 1998. Action spectra and functional antenna sizes of photosystems I and II in relation to the thylakoid membrane organization and pigment composition. Photosynth. Res. 58, 163–174.

    Article  CAS  Google Scholar 

  56. Laisk A., Oja V., Eichelmann H., Dall’Osto L. 2014. Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1. Biochim. Biophys. Acta. 1837, 315–325.

    Article  CAS  PubMed  Google Scholar 

  57. Niyogi K.K., Truong T.B. 2013. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr. Opin. Plant Biol.16, 307–314.

    Article  CAS  PubMed  Google Scholar 

  58. Foyer C.H., Neukermans J., Queval G., Noctor G., Harbinson J. 2012. Photosynthetic control of electron transport and the regulation of gene expression. J. Exp. Bot.63, 1637–1661.

    Article  CAS  PubMed  Google Scholar 

  59. Siggel U. 1976. The function of plastoquinone as electron and proton carrier in photosynthesis. Bioelectrochem. Bioenerg. 3, 302–318.

    Article  CAS  Google Scholar 

  60. Hope A.B. 2000. Electron transfers amongst cytochrome f, plastocyanin and photosystem I: Kinetics and mechanisms. Biochim. Biophys. Acta.1456, 5–26.

    Article  CAS  PubMed  Google Scholar 

  61. Ryzhikov S.B., Tikhonov A.N. 1988. Regulation of electron transfer rate in photosynthetic membranes of higher plants. Biofizika (Rus.). 33, 642–646.

    CAS  Google Scholar 

  62. Trubitsin B.V., Vershubskii A.V., Priklonskii V.I., Tikhonov A.N. 2015. Short-term regulation and alternative pathways of photosynthetic electron transport in Hibiscus rosa-sinensis leaves. J. Photochem. Photobiol. B.152, 400–415.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was partially supported by the Russian Foundation for Basic Research (project no. 18-04-00214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Tikhonov.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vershubskii, A.V., Tikhonov, A.N. pH-Dependent Regulation of Electron and Proton Transport in Chloroplasts In Situ and In Silico. Biochem. Moscow Suppl. Ser. A 14, 154–165 (2020). https://doi.org/10.1134/S1990747819030218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747819030218

Keywords:

Navigation