Skip to main content
Log in

Lateral Interactions Influence the Kinetics of Metastable Pores in Lipid Membranes

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The formation of through pores in lipid bilayer membranes occurs in a number of cellular processes and is also applied for biotechnological and biomedical purposes. In the classical theory of pore formation, diffusion of membrane defects in space of radii is considered. When the first pore reaches a critical radius, the membrane irreversibly ruptures. It is usually presumed that the diffusion of defects occurs independently; their possible lateral interactions are not taken into account. In this paper, we consider a possible influence of lateral interactions of metastable through pores on their kinetics. It is assumed that the interaction occurs due to the overlap of elastic deformation fields arising at the edges of two pores. The interaction energy of two circular pores was calculated in the Derjaguin approximation for rapidly decaying potentials. The unidimensional potential of interaction of two linear parallel edges of pores formed in membranes of different lipid composition was calculated in the framework of the theory of elasticity of liquid crystals adapted to lipid membranes. It is shown that this interaction should lead to a considerable reduction of the measured line tension of the pore edge. In addition, the lifetime of two optimally situated metastable pores can increase approximately 10 times due to the interaction. Extrapolation of the obtained results to the case of a larger number of interacting pores makes it possible to predict an additional increase in the lifetime by one or two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Davis H.T. 1996. Statistical mechanics of phases, interfaces, and thin films. New York: Wiley-VCH.

    Google Scholar 

  2. Cass A., Finkelstein A. 1967. Water permeability of thin lipid membranes. J. Gen. Physiol. 50, 1765–1784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Peterlin P., Arrigler V., Diamant H., Haleva E. 2012. Permeability of phospholipid membrane for small polar molecules determined from osmotic swelling of giant phospholipid vesicles. Advances in Planar Lipid Bilayers and Liposomes.16, 301–335.

    Article  CAS  Google Scholar 

  4. Nicholls D. 2013. Bioenergetics. 4th ed. Amsterdam: Academic Press.

    Google Scholar 

  5. Renault T.T., Floros K.V., Elkholi R., Corrigan K.A., Kushnareva Y., Wieder S.Y., Lindtner C., Serasinghe M.N., Asciolla J.J., Buettner C., Newmeyer D.D., Chipuk J.E. 2015. Mitochondrial shape governs BAX-induced membrane permeabilization and apoptosis. Mol. Cell.57, 69–82.

    Article  CAS  PubMed  Google Scholar 

  6. Basañez G., Sharpe J.C., Galanis J., Brandt T.B., Hardwick J.M., Zimmerberg J. 2002. BAX-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J. Biol. Chem. 277, 49360–49365.

    Article  PubMed  CAS  Google Scholar 

  7. Li C., Salditt T. 2006. Structure of magainin and alamethicin in model membranes studied by X-ray reflectivity. Biophys. J.91, 3285–3300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sychev S.V., Balandin S.V., Panteleev P.V., Barsukov L.I., Ovchinnikova T.V. 2015. Lipid-dependent pore formation by antimicrobial peptides arenicin-2 and melittin demonstrated by their proton transfer activity. J. Pept. Sci. 21, 71–76.

    Article  CAS  PubMed  Google Scholar 

  9. Karal M.A.S., Alam J.M., Takahashi T., Levadny V., Yamazaki M. 2015. Stretch-activated pore of the antimicrobial peptide, magainin 2. Langmuir31, 3391–3401.

    Article  CAS  PubMed  Google Scholar 

  10. Cervia L.D., Chang C.C., Wang L., Mao M., Yuan F. 2018. Enhancing electrotransfection efficiency through improvement in nuclear entry of plasmid DNA. Mol. Ther. Nucleic Acids11, 263–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pavlin M., Kandušer M. 2015. New insights into the mechanisms of gene electrotransfer–experimental and theoretical analysis. Sci. Rep. 5, 9132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Karpunin D.V., Akimov S.A., Frolov V.A. 2005. Pore formation in lipid membranes containing lysolipids and cholesterol. Biol. Membrany (Rus.). 22, 429–432.

    CAS  Google Scholar 

  13. Bruen D., Delaney C., Florea L., Diamond D. 2017. Glucose sensing for diabetes monitoring: Recent developments. Sensors.17, 1866.

    Article  CAS  PubMed Central  Google Scholar 

  14. Evans E., Smith B.A. 2011. Kinetics of hole nucleation in biomembrane rupture. New J. Phys. 13, 095010.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Karal M.A.S., Yamazaki M. 2015. Communication: Activation energy of tension-induced pore formation in lipid membranes. J. Chem. Phys. 143, 081103.

    Article  PubMed  CAS  Google Scholar 

  16. Karal M.A.S., Levadnyy V., Yamazaki M. 2016. Analysis of constant tension-induced rupture of lipid membranes using activation energy. Phys. Chem. Chem. Phys. 18, 13487–13495.

    Article  CAS  PubMed  Google Scholar 

  17. Evans E., Heinrich V., Ludwig F., Rawicz W. 2003. Dynamic tension spectroscopy and strength of biomembranes. Biophys. J.85, 2342–2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Melikov K.C., Frolov V.A., Shcherbakov A., Samsonov A.V., Chizmadzhev Y.A., Chernomordik L.V. 2001. Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. Biophys. J.80, 1829–1836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abidor I.G., Arakelyan V.B., Chernomordik L.V., Chizmadzhev Y.A., Pastushenko V.F., Tarasevich M.R. 1979. Electric breakdown of bilayer lipid membranes I. The main experimental facts and their qualitative discussion. J. Electroanal. Chem. 104, 37–52.

    Article  Google Scholar 

  20. Panov P.V., Akimov S.A., Batishchev O.V. 2014. Isoprenoid lipid chains increase membrane resistance to pore formation. Biol. Membrany (Rus.). 31, 331–335.

    CAS  Google Scholar 

  21. Derjaguin B.V. 1989. Theory of stability of colloids and thin films. Springer US. ISBN 978-0-306-11022-1.

    Google Scholar 

  22. Portet T., Dimova R. 2010. A new method for measuring edge tensions and stability of lipid bilayers: Effect of membrane composition. Biophys. J.99, 3264–3273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rawicz W., Olbrich K.C., McIntosh T., Needham D., Evans E. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J.79, 328–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Helfrich W. 1973. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. C.28, 693–703.

    Article  CAS  PubMed  Google Scholar 

  25. Akimov S.A., Volynsky P.E., Galimzyanov T.R., Kuzmin P.I., Pavlov K.V., Batishchev O.V. 2017. Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore. Sci. Rep. 7, 12152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Akimov S.A., Volynsky P.E., Galimzyanov T.R., Kuzmin P.I., Pavlov K.V., Batishchev O.V. 2017. Pore formation in lipid membrane II: Energy landscape under external stress. Sci. Rep. 7, 12509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Markin V.S., Kozlov M.M. 1985. Pores statistics in bilayer lipid-membranes. Biol. Membrany (Rus.). 2, 205–223.

    CAS  Google Scholar 

  28. Pastushenko V.F., Chizmadzhev Y.A., Arakelyan V.B. 1979. Electric breakdown of bilayer lipid membranes II. Calculation of the membrane lifetime in the steady-state diffusion approximation. J. Electroanal. Chem. 104, 37–52.

    Article  Google Scholar 

  29. Weaver J.C., Chizmadzhev Y.A. 1996. Theory of electroporation: A review. Bioelectrochem. Bioenerg. 41, 135–160.

    Article  CAS  Google Scholar 

  30. Landau L.D., Lifshitz E.M., Pitaevskij L.P. 1981. Course of theoretical physics. Vol. 10: Physical kinetics. Oxford.

  31. Awasthi N., Hub J.S. 2016. Simulations of pore formation in lipid membranes: Reaction coordinates, convergence, hysteresis, and finite-size effects. J. Chem. Theory Comput. 12, 3261–3269.

    Article  CAS  PubMed  Google Scholar 

  32. Kirsch S.A., Böckmann R.A. 2016. Membrane pore formation in atomistic and coarse-grained simulations. Biochim. Biophys. Acta. 1858, 2266–2277.

    Article  CAS  PubMed  Google Scholar 

  33. Molotkovsky R.J., Akimov S.A. 2009. Calculation of the line tension in various models of the lipid bilayer pore edge. Biol. Membrany (Rus.). 26, 149–158.

    Google Scholar 

  34. Galimzyanov T.R., Molotkovsky R.J., Kuzmin P.I., Akimov S.A. 2011. Stabilization of the raft bilayer structure due to elastic deformations of the membrane. Biol. Membrany (Rus.). 28, 307–314.

    CAS  Google Scholar 

  35. Akimov S.A., Frolov V.A., Kuzmin P.I., Zimmerberg J., Chizmadzhev Y.A., Cohen F.S. 2008. Domain formation in membranes caused by lipid wetting of protein. Phys. Rev. E.77, 051901.

    Article  CAS  Google Scholar 

  36. Galimzyanov T.R., Molotkovsky R.J., Kheyfets B.B., Akimov S.A. 2013. Energy of the interaction between membrane lipid domains calculated from splay and tilt deformations. JETP Lett. 96, 681–686.

    Article  CAS  Google Scholar 

  37. Akimov S.A., Aleksandrova V.V., Galimzyanov T.R., Batishchev O.V. 2017. Interaction of amphipathic peptides mediated by elastic membrane deformations. Biol. Membrany (Rus.). 34, 162–173.

    CAS  Google Scholar 

  38. Kondrashov O.V., Galimzyanov T.R., Pavlov K.V., Kotova E.A., Antonenko Y.N., Akimov S.A. 2018. Membrane elastic deformations modulate gramicidin A transbilayer dimerization and lateral clustering. Biophys. J.115, 478–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kondrashov O.V., Galimzyanov T.R., Jiménez-Munguía I., Batishchev O.V., Akimov S.A. 2019. Membrane-mediated interaction of amphipathic peptides can be described by a one-dimensional approach. Phys. Rev. E.99, 022401.

    Article  CAS  PubMed  Google Scholar 

  40. Israelachvili J. 2011. Intermolecular and surface forces. New York: Academic Press.

    Google Scholar 

  41. Hamm M., Kozlov M.M. 2000. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E.3, 323–335.

    Article  CAS  Google Scholar 

  42. Leikin S., Kozlov M.M., Fuller N.L., Rand R.P. 1996. Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. Biophys. J.71, 2623–2632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nagle J.F., Wilkinson D.A. 1978. Lecithin bilayers. Density measurement and molecular interactions. Biophys. J.23, 159–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dimova R. 2014. Recent developments in the field of bending rigidity measurements on membranes. Adv. Colloid Interface Sci.208, 225–234.

    Article  CAS  PubMed  Google Scholar 

  45. Hamm M., Kozlov M.M. 1998. Tilt model of inverted amphiphilic mesophase. Eur. Phys. J. B.6, 519–528.

    Article  CAS  Google Scholar 

  46. Bennett W.D., Sapay N., Tieleman D.P. 2014. Atomistic simulations of pore formation and closure in lipid bilayers. Biophys. J.106, 210–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wohlert J., den Otter W.K., Edholm O., Briels W.J. 2006. Free energy of a trans-membrane pore calculated from atomistic molecular dynamics simulations. J. Chem. Phys. 124, 154905.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Ministry of Science and Higher Education of the Russian Federation and partially by the Russian Foundation for Basic Research (project nos. 17-04-02070 and 18-54-74001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Akimov.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by R. Molotkovsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galimzyanov, T.R., Molotkovsky, R.J., Kalutsky, M.A. et al. Lateral Interactions Influence the Kinetics of Metastable Pores in Lipid Membranes. Biochem. Moscow Suppl. Ser. A 14, 117–125 (2020). https://doi.org/10.1134/S1990747820010055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747820010055

Keywords:

Navigation